ARTICLES
Shao-qiang LIU, Yue-jian PENG
For an integer $r\geq 2$ and bipartite graphs $H_i$, where $1\leq i\leq r$, the bipartite Ramsey number $br(H_1,H_2,\cdots,H_r)$ is the minimum integer $N$ such that any $r$-edge coloring of the complete bipartite graph $K_{N, N}$ contains a monochromatic subgraph isomorphic to $H_i$ in color $i$ for some $1\leq i\leq r$. We show that if $r\geq 3, \alpha_1,\alpha_2>0, \alpha_{j+2}\geq [(j+2)!-1]\sum\limits^{j+1}_{i=1}\alpha_i$ for $j=1,2,\cdots,r-2$, then $br(C_{2\lfloor \alpha_1 n\rfloor},C_{2\lfloor \alpha_2 n\rfloor},\cdots,C_{2\lfloor \alpha_r n\rfloor})=\big(\sum\limits^r_{j=1} \alpha_j+o(1)\big)n.$