应用数学学报(英文版)
HOME | ABOUT JOURNAL | EDITORIAL BOARD | FOR AUTHORS | SUBSCRIPTIONS | ADVERTISEMENT | CONTACT US
 
Acta Mathematicae Applicatae
Sinica, Chinese Series
 
   
   
Adv Search »  
Acta Mathematicae Applicatae Sinica, English Series 2013, Vol. 29 Issue (1) :123-134    DOI: 10.1007/s10255-013-0197-3
Current Issue | Next Issue | Archive | Adv Search << | >>
Chromatic Sums of Biloopless Nonseparable Near-Triangulations on the Projective Plane
Zhao-xiang Li1, Yan-pei Liu2, Bing-feng Si3
1 Department of Mathematics, Minzu University of China, Beijing 100081, China;
2 Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China;
3 School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
Download: PDF (KB)   HTML (KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In this paper, the chromatic sum functions of rooted biloopless nonseparable near-triangulations on the sphere and the projective plane are studied. The chromatic sum function equations of such maps are obtained. From the chromatic sum equations of such maps, the enumerating function equations of such maps are derived. An asymptotic evaluation and some explicit expression of enumerating functions are also derived.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
Zhao-xiang Li
Yan-pei Liu
Bing-feng Si
Keywordschromatic sum function   biloopless   triangulation   enumerating function     
Abstract: In this paper, the chromatic sum functions of rooted biloopless nonseparable near-triangulations on the sphere and the projective plane are studied. The chromatic sum function equations of such maps are obtained. From the chromatic sum equations of such maps, the enumerating function equations of such maps are derived. An asymptotic evaluation and some explicit expression of enumerating functions are also derived.
Keywordschromatic sum function,   biloopless,   triangulation,   enumerating function     
Received: 2010-06-24;
Fund:Supported by the National Natural Science Foundation of China (No. 10771225; 10871021; 71071016) and Fundamental Research Funds for the Central Universities.
Cite this article:   
Zhao-xiang Li, Yan-pei Liu, Bing-feng Si .Chromatic Sums of Biloopless Nonseparable Near-Triangulations on the Projective Plane[J]  Acta Mathematicae Applicatae Sinica, English Serie, 2013,V29(1): 123-134
URL:  
http://www.applmath.com.cn/jweb_yysxxb_en/EN/10.1007/s10255-013-0197-3      或     http://www.applmath.com.cn/jweb_yysxxb_en/EN/Y2013/V29/I1/123
 
[1] Bender, E.A. Asymptotic methods in enumeration. SIAM Rev., 16: 485-515 (1974)
[2] Gao, Z.C. The number of rooted 2-connected triangular maps on the projective plane. J. Combin. TheoryB, 53: 130-142 (1991)
[3] Liu Yanpei. Enumerative Theory of Maps. Kluwer, Dordrecht, Boston, London, 1999
[4] Liu Yanpei. On chromatic and dichromatic sum equations for planar maps. Discrete Math., 84: 167-179(1990)
[5] Liu Yanpei. Chromatic sum equations for rooted nonseparable planar maps. Comm. Appl. Math.Comput., 2: 1-11 (1988) (in Chinese)
[6] Tutte W T. Chromatic sums for rooted planar triangulations: the case λ= 1 and λ = 2. Canad. J. Math.,25: 426-447 (1973)
[7] Tutte W T. Chromatic sums for rooted planar triangulations II: the case λ= τ + 1. Canad. J. Math., 25:657-671 (1973)
[8] Tutte W T. Chromatic sums for rooted planar triangulations III: the case λ= 3. Canad. J. Math., 25:780-790 (1973)
[9] Tutte W T. Chromatic sums for rooted planar triangulations IV: the case λ= ∞. Canad. J. Math., 26:309-325 (1974)
[10] Tutte W T. Chromatic sums for rooted planar triangulations V: special function. Canad. J. Math., 26:893-907 (1974)
[11] Tutte W T. A census of planar triangulations. Canad. J. Math., 14: 21-38 (1962)
没有找到本文相关文献
Copyright 2010 by Acta Mathematicae Applicatae Sinica, English Serie