应用数学学报(英文版)
HOME | ABOUT JOURNAL | EDITORIAL BOARD | FOR AUTHORS | SUBSCRIPTIONS | ADVERTISEMENT | CONTACT US
 
Acta Mathematicae Applicatae
Sinica, Chinese Series
 
   
   
Adv Search »  
Acta Mathematicae Applicatae Sinica, English Series 2011, Vol. 27 Issue (4) :595-600    DOI: 10.1007/s10255-011-0109-3
ARTICLES Current Issue | Next Issue | Archive | Adv Search << | >>
The Decision of Prime and Primary Ideal
Jin-wang LIU1, Dong-mei LI1,2
1. School of Mathematics and Computing Sciences, Hunan University of Science and Technology, Xiangtan 411201, China;
2. School of Mathematical Science and Computing Technology, Central South University, Changsha 410083, China
Download: PDF (1KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract We give more efficient criteria to characterise prime ideal or primary ideal. Further, we obtain the necessary and sufficient conditions that an ideal is prime or primary in real field from the Gröbner bases directly.  
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsGrö   bner basis   prime ideal   primary ideal     
Abstract: We give more efficient criteria to characterise prime ideal or primary ideal. Further, we obtain the necessary and sufficient conditions that an ideal is prime or primary in real field from the Gröbner bases directly.  
KeywordsGrö,   bner basis,   prime ideal,   primary ideal     
Received: 2010-03-25;
Fund:

Supported by the National Natural Science Foundation of China (No. 11071062) and Hunan provincial Natural Science Foundation of China (No. 10JJ3065) and Scientific Research Fund of Hunan province education Department (No. 10A033) and Hunan Provincial Degree and Education of Graduate Student Foundation (No. JG2009A017).

Cite this article:   
.The Decision of Prime and Primary Ideal[J]  Acta Mathematicae Applicatae Sinica, English Serie, 2011,V27(4): 595-600
URL:  
http://www.applmath.com.cn/jweb_yysxxb_en/EN/10.1007/s10255-011-0109-3      或     http://www.applmath.com.cn/jweb_yysxxb_en/EN/Y2011/V27/I4/595
 
[1] Adams, W., Loustaunau, P. An Introduction to Gröbner Bases, Graduate Studies in Mathematics 3. Amer.Math. Soc., Providence, 1994
[2] Becker, T.,Weispfenning, V. Gröbner Bases-A Computational Approach to Commutative Algebra. Springer-Verlag, GTM 141, New York, 1993
[3] Buchberger, B. An algorithm for finding a basis for the residue class ring of a zero dimensiomal polynomial.PhD thesis, Universität Innsbruck, Institut für Mathematik, 1965
[4] Buchberger, B. Gröbner bases: An algorithmic method in polynomial ideal theory. In: Recent Trends inMultidimensional Systems Theory, N.K. Bose (Ed), D. Reidel, Dordrecht, 1985, Chapter 6
[5] Eisenbud, D. Direct method for primary decomposition. Invent Mth., 110: 207-235 (1992)
[6] Gao, S.,Wan D., Wang, M. Primary decomposition of zero-dimensional ideals over finite fields. Math.Comp., 78: 509-521 (2009)
[7] Gianni, P. Gröbner bases and primary decomposition of polynomial ideals. J. Symb. Comp., 6(2): 149-167(1988)
[8] Grabe, H.G. Minimal primary decomposition and factorized Gröbner bases. Appl. Algebra Engrg. Comm.Comput., 8: 265-278 (1997)
[9] Greeuel, G.-M., Pfister, G. A Singular Introduction to Commutative Algebra. Spinger-Verlag, New York,2002
[10] Liu J.W., Wang, M.S. The term orderings which are compatible with comosition II. J. Smb. Comput, 35:153-168 (2003)
[11] Liu J.W., Wang, M.S. Homogeneous Gröbner bases under composition. J. Agebra, 303: 668-676 (2006)
[12] Liu J.W., Wang, M.S. Further results on homogeneous Gröbner bases under composition. J. Agebra, 315:134-143 (2007)
[13] Monico, C. Computing the primary decomposition of zero-dimensional ideals. J. Symb. Comp., 34:451-459 (2002)
[14] Sausse, A., Antipolis, I.S., Safir, P., Antipolis, S. A new approach to primary decomposition. J. Symb.Comp., 31: 243-257 (2001)
[15] Shimogara, T. Localization and primary decomposition of polynomial ideals. J. Symbolic Comp., 22:247-277 (1996)
没有找到本文相关文献
Copyright 2010 by Acta Mathematicae Applicatae Sinica, English Serie