The Generalized Spike Layer Solution to Singular Perturbation Nonlinear Parabolic System with Two Parameters
FENG Yihu1,2, HOU Lei2, MO Jiaqi3
1. Department of Electronics and Information Engineering, Bozhou University, Bozhou 236800, China; 2. Department of mathematics, Shanghai University, Shanghai 200436, China; 3. School of Mathematics & Statistics, Anhui Normal University, Wuhu 241003, China
Abstract:A nonlinear parabolic differential system to the singular perturbation problem is studied in this paper. First the outer solution is structured by using the singular perturbation method. Second the spike layer corrective, boundary layer corrective and initial layer corrective terms are obtained by using the multiple scales and stretched variable methods respectively. Final the asymptotic expansion of the generalized solution is obtained. Using the fixed point theorem, the uniform validity for the asymptotic solution is proved. And the asymptotic solution can also carry on analytical operation. So it is known more characters for the generalized solution. Thus it possesses better applied foreground.
Constantin A. On the existence of positive solutions of second order differential equations. Ann. Mat. Pura. Appl., 2005, 184(4):131-138
[4]
Ertem T, Zafer A. Monotone positive solutions for a class of second-order nonlinear differential equations. J. Comput. Appl. Math., 2014, 259:672-681
[5]
Hovhannisyan G, Vulanovic R. Stability inequalities for one-dimensional singular perturbation problems. Nonlinear Stud., 2008, 15(4):297-322
[6]
Graef J R, Kong L. Solutions of second order multi-point boundary value problems. Math. Proc. Camb. Philos. Soc., 2008, 145(2):489-510
[7]
Barbu L, Cosma E. Elliptic regularizations for the nonlinear heat equation. J. Math. Anal. Appl., 2009, 351(2):392-399
[8]
Martinez S, Wolanskin. A singular perturbation problem for a quasi-linear operator satisfying the natural condition of Lieberman. SIAM J. Math. Anal., 2009, 41(1):318-359
[9]
Kellogg R B, Koptev N A. Singularly perturbed semilinear reaction-diffusion problem in a polygonal domain. J. Differ. Equations, 2010, 248(1):184-208
[10]
Bonfoh A, Grassrlli M, Miranville A. Intertial manifolds for a singular perturbation of the viscous Cahn-Hilliiard-Gurtin equation. Topol. Methods Nonlinear Anal., 2010, 35(1):155-185
[11]
Faye L, Frenod E, Seck D. Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment. Discrete Contin. Dyn. Syst., 2011, 29(3):1001-1030
[12]
Tian C R, Zhu P. Existence and asymptotic behavior of solutions for quasilinear parabolic systems. Acta Appl. Math., 2012, 121(1):157-173
[13]
Skrynnikox Y. Solving initial value problem by matching asymptotic expansions. SIAM J. Appl. Math., 2012, 72(1):405-416
[14]
Samusenko P F. Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations. J. Math. Sci., New York, 2013, 189(5):834-847
[15]
Mo J Q. Singular perturbation for a class of nonlinear reaction diffusion systems. Science in China, Ser A., 1989, 32(11):1306-1315
[16]
Mo J Q, Lin W T. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations. J. Sys. Sci. & Complexity, 2008, 20(1):119-128
[17]
Mo J Q. A class of singulaely perturbed differential-difference reaction diffusion equations. Adv. Math., 2009, 38(2):227-230
[18]
Mo J Q. Approximate solution of homotopic mapping to solitary for generalized nonlinear KdV system. Chin. Phys. Lett., 2009, 26(1):010204
[19]
Mo J Q. A variational iteration solving method for a class of generalized Boussinesq equations. Chin. Phys. Lett., 2009, 26(6):060202
[20]
Mo J Q. Homotopic mapping solving method for gain fluency of laser pulse amplifier. Science in China, Ser. G, 2009, 39(5):568-661
[21]
Mo J Q, Lin W T. Asymptotic solution for a class of sea-air oscillator model for El-Nino-southern oscillation. Chin. Phys., 2008, 17(2):370-372
[22]
Mo J Q. A class of homotopic solving method for ENSO mpdel. Acta Math. Sci., 2009, 29(1):101-109
[23]
Mo J Q, Chen H J. The corner layer solution of Robin problem for semilinear equation. Math. Appl., 2012, 25(1):1-4
[24]
Mo J Q, Lin Y H, Lin W T, Chen L H. Perturbed solving method for interdecadal sea-air oscillator model. Chin. Geographical Sci., 2012, 22(1):42-47
[25]
Feng Y H, Mo J Q. Asymptotic solution for singularly perturbed fractional order differential equation. J. Math., 2016, 36(2):239-245
[26]
Feng Y H, Chen X F, Mo J Q. The shock wave solution of a class of singularly perturbed problem for generalized nonlinear reaction diffusion equation. Math. Appl., 2017, 30(1):1-7
[27]
冯依虎, 莫嘉琪. 一类非线性非局部扰动LGH方程的孤子行波解. 应用数学和力学, 2016, 37(4):426-433(Feng Y H, Mo J Q. A class of soliton travelling wave solution for the nonlinear nonlocal disturbed LGH equation. Appl. Math. Mech., 2016, 37(4):426-433)
[28]
冯依虎, 史兰芳, 莫嘉琪. 关于将飞秒脉冲激光用于纳米金属薄膜传导系统的研究. 工程数学学报, 2017, 34(1):13-20(Feng Y H, Shi L F, Mo J Q. Study of transfers system for femtosecond pulse laser to Nano metal film. Chin. J. Engin. Math., 2017, 34(1):13-20)
[29]
冯依虎, 陈怀军, 莫嘉琪. 激光脉冲放大器增益通量耦合系统解. 应用数学和力学, 2017, 38(5):561-569(Feng Y H, Chen H J, Mo J Q. Asymptotic solution to a class of nonlinear singular perturbation autonomic differential system. Appl. Math. Mech., 2017, 38(5):561-569)
[30]
冯依虎, 莫嘉琪. 一类广义奇摄动非线性双曲型积分-微分方程模型. 吉林大学学报(理学版), 2017, 55(5):1055-1060(Feng Y H, Mo J Q. A class of generalized singularly perturbed nonlinear hyperbolic integraldifferential equation model. J. Jilin Univ., 2017, 55(5):1055-1060)