Consensus Tracking of High-order Multi-agent Systems with Initial State Errors
LI Guojun1,2, CHEN Dongjie2, HAN Yishi2
1. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China; 2. Basic Courses Department, Zhejiang Police College, Hangzhou 310053, China
Abstract:In this paper, the problem of how to control the high-order multi-agent systems is considered by iterative learning method. During the process of tracking, the consistency tracking is realized after rectifying the initial state errors. In the process of rectifying, the systems only rectify a type of the state errors within a certain interval. When this type of state errors rectifying operation is completed, the systems begin to rectify another type of state errors, and so on. All the initial state errors can be completely rectified, and all the rectifying operations are completed within a specified time. Finally, the simulation results verify the effectiveness of the proposed algorithm.
Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 1995, 75(6):1226-1229
[2]
Jadbabaie A, Lin J, Morse A. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control, 2003, 48(6):988-1001
[3]
关永强, 纪志坚, 张霖, 王龙. 多智能体系统能控性研究进展. 控制理论与应用, 2015, 32(4):421-431(Guan Y, Ji Z, Zhang L, Wang L. Recent developments on controllability of multi-agent systems. Control Theory & Applications, 2017, 34(3):401-407)
[4]
Ren W, Beard R, Atkins E. Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine, 2007, 27(2):71-82
[5]
Meng D, Jia Y. Formation control for multi-agent systems through an iterative learning design approach. International Journal of Robust & Nonlinear Control, 2014, (24):340-361
[6]
Fax J, Murray R. Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control, 2004, 49(9):1465-1476
[7]
Olfati-Saber R, Murray M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control, 2004, 49(9):1520-1533
[8]
Zhu W, Cheng D. Leader-following consensus of second-order agents with multiple time-varying delays. Automatica, 2010, 46(12):1994-1999
[9]
Ren W. Second-order consensus algorithm with extensions to switching topologies and reference models. In:Proceedings of the IEEE American Control Conference. New York:IEEE, 2007, 1431-1436
[10]
Khan U. High Dimensional Consensus in Large-scale Networks:Theory and Applications. Carnegie Mellon University, USA, 2009
陈世明, 王培, 李海英, 赖强. 带强连通分支的多智能体系统可控包含控制. 控制理论与应用, 2017, 34(3):401-407(Chen S, Wang P, Li H, Lai Q. Controllable containment control of multi-agent systems with strongly connected sub-graph. Control Theory & Applications, 2017, 34(3):401-407)
[13]
盖彦荣, 陈阳舟, 宋学君, 齐耀辉. 有领导者线性多智能体系统一致性的分析与设计. 中南大学学报 (自然科学版), 2017, 48(3):735-741(Ge Y, Chen Y, Song X, Qi Y. Consensus analysis and design problem for leader-following linear multi-agent systems. Journal of Central South University (Science and Technology), 2017, 48(3):735-741)
[14]
谭拂晓, 关新平, 刘德荣. 非平衡拓扑结构的多智能体网络系统一致性协议. 控制理论与应用, 2009, 26(10):1087-1092(Tan F, Guan X, Liu D. Consensus protocol in networked multi-agent systems with non-balanced topology. Control Theory & Applications, 2009, 26(10):1087-1092)
[15]
席裕庚, 李晓丽. 多智能体系统一致性的递阶结构设计. 控制理论与应用, 2015, 32(9):1191-1199(Xi Y, Li X. Hierarchical structure design for multi-agent consensus. Control Theory & Applications, 2015, 32(9):1191-1199)
[16]
Das A, Lewis F. Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica, 2010, 46(12):2014-2021
[17]
Ranjbar S, Shabaninia F, Nemati A, Stan S. A novel robust decentralized adaptive fuzzy control for swarm formation of multiagent systems. IEEE Transactions on Industrial Electronics, 2013, 59(8):3124-3134
[18]
Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning. J. Robotic Syst., 1984, 1(2):123-140
[19]
Bristow D, Tharayil M, Alleyne A. A survey of iterative learning control. IEEE Control Syst. Mag., 2006, 26(3):96-114
[20]
Meng D, Jia Y. Finite-time consensus for multi-agent systems via terminal feedback iterative learning. IET Control Theory and Applications, 2011, 5(18):2098-2110
[21]
Meng D, Jia Y. Iterative learning approaches to design finitetime consensus protocols for multi-agent systems. Systems and Control Letters, 2012, 61(1):187-194
[22]
Meng D, Jia Y, Du J, Yu F. Tracking control over a finite interval for multi-agent systems with a time-varying reference trajectory. Systems & Control Letters, 2012, (67):807-818
[23]
Wang D. Convergence and robustness of discrete time nonlinear systems with iterative learning control. Automatica, 1998, 34(11):1445-1448
[24]
Sun M, Wang D. Iterative learning control with initial rectifying action. Automatica, 2002, 38(7):1177-1182
[25]
Li X, Chow T, Ho J, Zhang J. Iterative learning control with initial rectifying action for nonlinear continuous systems. IET Control Theory Appl., 2009, 3(1):49-55
[26]
Xu J, Tan Y. A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties. IEEE Trans. Autom. Control, 2002, 47(11):1940-1945
[27]
Qu Z, Xu J. Asymptotic learning control for a class of cascaded nonlinear uncertain systems. IEEE Trans. Autom. Control, 2002, 47(8):1369-1376
[28]
Chien C, Hsu C, Yao C. Fuzzy system-based adaptive iterative learning control for nonlinear plants with initial state errors. IEEE Trans. Fuzzy Syst., 2004, 12(5):724-732
[29]
Xu J, Yan R. On initial conditions in iterative learning control. IEEE Trans. Autom. Control, 2005, 50(9):1349-1354
[30]
Chi R, Hou Z, Xu J. Adaptive ILC for a class of discrete-time systems with iteration-varying trajectory and random initial condition. Automatica, 2008, 44(8):2207-2213
[31]
李金沙. 多智能体系统一致性学习协议的设计与分析. 西安电子科技大学, 2015(Li J. Design and analysis of consensus protocols for multi-agent systems by using learning control. Xi'an:Xidian University, 2015)
[32]
严求真, 孙明轩, 李鹤. 非参数不确定多智能体系统一致性误差跟踪学习控制. 控制理论与应用, 2016, 33(6):793-799(Yan Q, Sun M, Li H. Consensus-error-tracking learning control for nonparametric uncertain multi-agent systems. Control Theory & Applications, 2016, 33(6):793-799)