应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2014, Vol. 37 Issue (1): 145-159    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
周期环境中基于个体尺度的种群模型的最优收获策略
何泽荣, 刘荣, 刘丽丽
杭州电子科技大学运筹与控制研究所, 杭州 310018
Optimal Harvesting of a Size-structured Population Model in a Periodic Environment
HE Zerong, LIU Rong, LIU Lili
Institute of Operational Research and Cybernetics, Hangzhou Dianzi University, Hangzhou 310018
 全文: PDF (458 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文研究一类周期环境中具有尺度结构的种群模型的适定性及最优收获问题.首先应用积分方程及算子理论证明了系统非负解的存在唯一性,然后由Mazur定理确立了最优策略的存在性,再借助切锥法锥的特征结构导出了最大值原理,给出最优控制为Bang-Bang型的判别条件. 最后陈述了数值方法与计算实例.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
何泽荣
刘荣
刘丽丽
关键词周期环境   尺度结构   最优收获   谱半径   不动点   最大值原理     
Abstract: It is readily observed that the habitat of many biological species often undergoes some periodic changes because of the such effects as seasoning variations. On the other side, lots of ecological studies show that the vital parameters of an individual are closely connected with its body size, such as mass, length, surface area, volume, etc. Motivated by these considerations, we in this paper investigate an exploitation problem of renewable biological resources incorporating the individual's size-structure and periodical changes into the population model. Firstly we propose an integro-partial system to describe the population dynamics, in which the mortality, fertility, growth rate and harvesting effort are time-periodic functions and the boundary condition (i.e. renewal equation) is of global feedback form. Then we treat the well-posedness problem of the state system. By means of characteristics an integral equation is established for the population fertility, which is put into an abstract framework in a suitable space of functions. Roughly speaking, the model will be well posed if the reproducing number is less than one. Secondly we prove the existence of optimal policies via a maximizing sequence and a use of Mazur's theorem in convex analysis. Following that is a careful derivation of necessary optimality conditions, which is finished by tangent-normal cones and adjoint system techniques, and provide an exact description for the optimal strategies. Excluding the singular cases enable us to assert that optimal controllers are unique and take the form of bang-bang, but we cannot expect an explicit formula for them due to complexities. Finally, we present an algorithm to compute the optimal group and test it with an example.
Key wordsenvironmental periodicity   size structure   optimal harvesting   spectral radius   fixed point   maximum principle   
收稿日期: 2012-04-02;
基金资助:国家自然科学基金(No.11271104)资助项目.
引用本文:   
何泽荣,刘荣,刘丽丽. 周期环境中基于个体尺度的种群模型的最优收获策略[J]. 应用数学学报, 2014, 37(1): 145-159.
HE Zerong,LIU Rong,LIU Lili. Optimal Harvesting of a Size-structured Population Model in a Periodic Environment[J]. Acta Mathematicae Applicatae Sinica, 2014, 37(1): 145-159.
 
[1] Outrata J, Zowe J. A Numerical Approach to Optimization Problems with Variational Inequality Constraints. Mathematical Programming, 1995, 68(1-3): 105-130
[2] He Z, Liu Y. An Optimal Birth Control Problem for a Dynamical Population Model with Size-structure. Nonlinear Analysis: Real World Applications, 2012, 13: 1369-1378
[1] 唐金芳. 拟非扩张多值映像与全渐近严格伪压缩映像的分裂公共不动点问题[J]. 应用数学学报, 2014, 37(1): 119-126.
[2] 夏顺友. 抽象凸空间上的拟变分不等式及其应用[J]. 应用数学学报, 2014, 37(1): 78-86.
[3] 张兴秋. 奇异半正Sturm-Liouville边值问题的多个正解[J]. 应用数学学报, 2013, 36(6): 1094-1108.
[4] 荣祯. 偏序度量空间中的若干不动点定理及其在周期边值问题中的应用[J]. 应用数学学报, 2013, 36(5): 923-934.
[5] 魏君, 蒋达清, 祖力. 一维p-Laplace二阶脉冲微分方程的奇异边值问题[J]. 应用数学学报, 2013, 36(3): 414-430.
[6] 朴勇杰. 度量凸空间中Lipschitz型非自映射族的唯一公共不动点[J]. 应用数学学报, 2013, 36(3): 454-462.
[7] 周辉, 周宗福. S-型分布时滞的细胞神经网络的概周期解[J]. 应用数学学报, 2013, 36(3): 521-531.
[8] 汪会民, 孟祥旺, 蒋威. 二阶非线性时滞微分方程的多个正解[J]. 应用数学学报, 2013, 36(3): 566-572.
[9] 刘英. Banach空间中关于变分不等式组与严格伪压缩映射的粘滞逼近法[J]. 应用数学学报, 2013, 36(2): 324-336.
[10] 叶国炳, 申建华, 李建利. 带超前项的三阶脉冲中立型积分微分方程的初值问题[J]. 应用数学学报, 2012, (6): 1044-1057.
[11] 孙博. 一类二阶Sturm-Liouville型边值问题多个正解的存在性[J]. 应用数学学报, 2012, 35(5): 769-776.
[12] 蔡增霞, 张咸昭, 刘立山. 三阶 p-Laplace 耦合奇异边值问题的正解 [J]. 应用数学学报, 2012, (3): 421-429.
[13] 赵良才, 张石生. 广义平衡与不动点问题的黏性逼近[J]. 应用数学学报, 2012, (2): 330-345.
[14] 栾世霞, 赵艳玲. 带P-Laplacian 算子的四点四阶奇异边值问题的对称正解[J]. 应用数学学报, 2011, 34(5): 801-812.
[15] 张树义. 赋范线性空间中渐近拟伪压缩型映象不动点的修改的广义Ishikawa迭代逼近[J]. 应用数学学报, 2011, 34(5): 886-894.
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9