应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2014, Vol. 37 Issue (1): 1-12    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
含有广义p-Laplace算子的抛物边值
魏利1, Ravi P. Agarwal2
1. 河北经贸大学数学与统计学学院, 石家庄 050061;
2. Department of Mathematics, Texas Agricultural and Mechanical University-Kingsville, Texas, U.S.A.TX 78363-8202
Existence of Solution to Parabolic Boundary Value Problem with Generalized p-Laplacian Operator
WEI Li1, Ravi P. Agarwal2
1. School of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang 050061;
2. Department of Mathematics, Texas Agricultural and Mechanical University-Kingsville, Texas, U.S.A. TX 78363-8202
 全文: PDF (367 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用极大单调单调算子值域的扰动结论,借助于构造辅助方程的技巧,研究了一类含有广义p-Laplace算子且具有混合边值条件的非线性抛物方程,并得到了这类非线性边值问题解的存在性的抽象结论.文中所用方法是对以往工作的推广和补充.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏利
Ravi P. Agarwal
关键词极大单调算子   hemi连续映射   广义p-Laplace算子   值域的和   非线性抛物边值问题     
Abstract: Abstract By using a perturbation result on the ranges of maximal monotone operators, and by using a method of constructing an auxiliary nonlinear equation, a nonlinear parabolic equation involving the generalized p-Laplacian operator with mixed boundary conditions is studied in this paper. An abstract result of the existence of solution for this nonlinear bound-ary value problem is obtained. The method used in this paper extends and complements some of the previous work.
Key wordsmaximal monotone operator   hemi-continuous mapping   generalized p-Laplacian operator   sum of ranges   nonlinear parabolic boundary value problem   
收稿日期: 2010-08-09;
基金资助:国家自然科学基金项目(11071053),河北省自然科学基金(A2010001482),河北省教育厅科学研究计划重点(ZH2012080),河北经贸大学科研重点(2013KYZ01)资助项目.
引用本文:   
魏利,Ravi P. Agarwal. 含有广义p-Laplace算子的抛物边值[J]. 应用数学学报, 2014, 37(1): 1-12.
WEI Li,Ravi P. Agarwal. Existence of Solution to Parabolic Boundary Value Problem with Generalized p-Laplacian Operator[J]. Acta Mathematicae Applicatae Sinica, 2014, 37(1): 1-12.
 
[1] Calvert B D, Gupta C P. Nonlinear Elliptic Boundary Value Problems in Lp-spaces and Sums of Ranges of Accretive Operators. Nonlinear Anal., 1978, 2: 1-26
[2] Wei Li, He Zhen. The Applications of Sums of Ranges of Accretive Operators to Nonlinear Equations Involving the p-Laplacian operator. Nonlinear Anal., 1995, 24: 185-193
[3] Wei Li, He Zhen. The Applications of Theories of Accretive Operators to Nonlinear Elliptic Boundary Value Problems in Lp-spaces. Nonlinear Anal., 2001, 46: 199-211
[4] Wei li, Zhou Haiyun. The Existence of Solutions of Nonlinear Boundary Value Problem Involving the p-Laplacian Operator in Ls-spaces. J. Syst. Sci. Complexity, 2005, 18: 511-521
[5] Wei Li, Zhou Haiyun. Research on the Existence of Solution of Equation Involving the p-Laplacian operator. Appl. Math. J. Chinese Univ. (Ser B), 2006, 21: 191-202
[6] Wei Li, Zhou Haiyun. Existence of Solutions of a Family of Nonlinear Boundary Value Problems in L2-spaces. Appl. Math. J. Chinese Univ. (Ser B), 2005, 20: 175-182
[7] 魏利, 段丽凌. 非线性椭圆边值问题在Lp空间中解的存在性的进一步研究. 数学的实践与认识, 2009, 39(6): 187-193(Wei Li, Duan Liling. Further Research on the Existence of Solution of Nonlinear Elliptic Boundary Value Problem inssize L^p-spaces. Math. in Practice and Theory. 2009, 39(6): 187-193)
[8] Wei Li, Zhou Haiyun, Agarwal R P. Existence of Solutions for Nonlinear Neumann Boundary Value Problems. J. Math. Resear. Exposi., 2010, 30(1): 99-109
[9] Reich S. The Range of Sums of Accretive and Monotone Operators. J. Math. Anal. Appli., 1979, 68: 310-317
[10] 于海波. 具强非线性源的p-Laplace方程第二初值问题. 厦门: 厦门大学硕士论文, 2007 (Yu Haibo. Non Newton Filtration Equation with a Nonlinear Boundary Condition. Xiamen: Master Thesis in Xiamen University, 2007)
[11] Barbu V. Nonlinear Semigroups and Differential Equations in Banach spaces. Noordhoff, Leyden, the Netherlands, 1976
[12] Pascali D, Sburlan S. Nonlinear Mappings of Monotone Type. Romania: Sijthoff-Noordhoff, 1978
[13] Chen Z C, Luo T. The Initial-boundary Value Problem for Quasilinear Integro-differential Equations. International J. Differential Equa. Appli., 2002, 6: 299-306
[14] Zeidler E. Nonlinear Functional Analysis and its Applications, ⅡA. Linear Monotone Operators. New York: Springer-Verlag, 1990
没有找到本文相关文献
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9