应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2013, Vol. 36 Issue (6): 1044-1052    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
广义Logistic时滞微分方程零解的3/2-全局吸引性
冯伟1,2, 王进良1,2, 燕居让3
1. 北京航空航天大学数学与系统科学学院, 北京 100191;
2. 数学、信息与行为教育部重点实验室, 北京 100191;
3. 山西大学数学学院, 太原 030006
The 3/2-Global Attractivity of the Zero Solution of the General Logistic Delay Differential Equation
FENG Wei1,2, WANG Jinliang1,2, YAN Jurang3
1. Department of Mathematics & LMIB, Beihang University, Beijing 100191;
2. Department of Mathematics, Shanxi University, Taiyuan 030006
 全文: PDF (331 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文考虑广义时滞Logistic方程
x'(t)+(1+x(t))F(txtα)=0,t≥0
零解的全局吸引性,运用一些分析方法和技巧,得到方程零解是3/2-全局吸引的一个充分条件,结果推广并改进了现有文献中的相关结论.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯伟
王进良
燕居让
关键词广义logistic时滞微分方程   全局吸引性   振动   非振动     
Abstract: The general Logistic delay differential equation
x'(t)+(1+x(t))F(t,xtα)=0, t≥0
is considered. By using some analysis methods and techniques, a sufficient condition is obtained for the 3/2-global attractivity of the zero solution of (*), which generalized and improved the related results in the literature.
Key wordsgeneral logistic delay differential equation   the 3/2-Global attractivity   oscillation   nonoscillation   
收稿日期: 2011-11-11;
基金资助:国家自然科学基金(10971009,11101021)和国家留学基金(2011602507)资助项目.
引用本文:   
冯伟,王进良,燕居让. 广义Logistic时滞微分方程零解的3/2-全局吸引性[J]. 应用数学学报, 2013, 36(6): 1044-1052.
FENG Wei,WANG Jinliang,YAN Jurang. The 3/2-Global Attractivity of the Zero Solution of the General Logistic Delay Differential Equation[J]. Acta Mathematicae Applicatae Sinica, 2013, 36(6): 1044-1052.
 
[1] Schweizer M. Hedging of Options in a General Semimartingale Model. ETH Zurich, 1988
[2] Myskis A. D. On the Solutions of Linear Homogeneous Differential Equations of the First Order and Stable Type with Retarded Arguments. Mat. Sb., 1951,28: 641-658
[3] Schweizer M. Option Hedging for Semimartingales. Stochastics Processes and Their Applications, 1991, 37: 339-363
[4] Wright M. A Non-linear Difference-differential Equation. J. Reine Angew Math., 1955, 194(1): 66-87
[5] Riesner M. Hedging Life Insurance Contracts in a Lėvy Process Financial Market. Insurance: Mathematics and Economics, 2006, 38: 599-608
[6] Yorke J. A. Asymptotic Stability for One Demensional Differential-delay Equations. J. Diff. Eq., 1970, 7: 189-202
[7] Riesner M. Locally Risk Minimizing Hedging of Insurance Payment Streams. Astin Bulletin, 2007, 37: 67-91
[8] May M. Time-delay Versus Stability in Population Models with Two and Three Trophic Levels. Ecology, 1973, 54(2): 315-326
[9] Vandaele N, Vanmaele M. Locally Risk Minimizing Hedging Strategy for Unit-linked Life Insurance Contracts in a Lėvy Process Financial Market. Insurance: Mathematics and Economics, 2008, 42: 1128-1137
[10] Yoneyama T, Sugie J. Exponentially Asymptotically Stable Dynamical Systems. Appl. Anal., 1988, 27: 235-242
[11] Chan T. Pricing Contingent Claims on Stocks Driven by Lėvy Processes. The Annals of Applied Probability, 1999, 9(2): 504-528
[12] Deshpande A, Ghosh M K. Risk Minimizing Option Pricing in a Regime Switching Market. Stochastic Analysis and Applications, 2008, 26: 313-324
[13] Yoneyama T. The 3/2 Stability Theorem for One-dimensional Delay-differential Equations with Unbounded Delay. J. Math. Anal. Appl., 1992, 165: 133-143
[14] Matsunaga H. etc. Global Attractivity Results for Nonlinear Delay Differential Equations. J. Math. Anal. Appl., 1999, 234: 77-90
[15] 庾建设. 一类泛函微分方程零解的全局吸引性及应用. 中国科学(A辑), 1996, 26(1): 23-33 (Jianshe Yu. The Global Attractivity of the Zero Solution of Some Kind Functional Differential Equation and Its Application. Science in China (Series A), 1996, 26(1): 23-33)
[16] 唐先华, 庾建设. 一类非线性FDE整体解的存在性及全局吸引性. 数学年刊, 2000, 21A(6): 655-666 (Tang Xianhua, Yu Jianshe. Existence and Global Attractivity of Entire Solution of Some Kind of Nonlinear Functional Differential Eqaution (FDE). Chinese Annals of Mathematics, 2000, 21A(6): 655-666)
[17] 唐先华, 庾建设. "食物有限"型泛函微分方程零解的3/2-全局吸引性.中国科学 (A辑), 2000, 30(10): 900-913 (Tang Xianhua, Yu Jianshe. The 3/2-global Attractivity of the Zero Solution of the Food-limited Functional Differential Equation. Science in China (Series A), 2000, 30(10): 900-913)
[18] Gopalsamy K. Global Stability in the Delay-logistic Equation with Discrete Delays. Houston J. Math., 1990, 16(3): 347-356
[19] Chen M P, Yu J S, Zeng D G, Li J W. Global Attractivity in a Generalized Nonautonomous Delay Logistic Equation. Bulletin of Institute of Mathemathics Academia Sinica, 1994, 22(2): 91-99
[20] Sato K. Lėvy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999
[21] Li J. W. Global Attractivity in a Generalized Delay Logistic Equation. Appl. Math. -JCU , 1996, 11B, 165-174
[22] 申建华, 庾建设, 王志成. 一维非线性泛函微分方程的全局吸引性. 高校应用数学学报 (A辑), 1996, 11(1): 1-6 (Shen Jianhua, Yu Jianshe, Wang Zhicheng. Global Attractivity for One Dimensional Nonlinear Functional Differential Equation. Appl. Math. J. Chinese Univ. Ser. A, 1996, 11(1): 1-6)
[23] Ghosh M K., Arapostathis A, Marcus S I. Ergodic Control of Switching Diffusions. SIAM Journal of Control and Optimization, 1997, 35: 1952-1988
[24] Yu J S, Wu J H, Zou X F. On a Hyperlogistic Delay Equation. Glasgow Math J. , 1996, 38: 255-261
[25] So Joseph W H, Yu J S. Global Attractivity for a Population Model with Time Delay. Proc. Amer. Math. Soc., 1995, 123: 2687-2694
[26] 冯伟, 赵爱民, 燕居让. 广义Logistic方程的全局吸引性. 高校应用数学学报 (A辑), 2001, 16(2): 136-142 (Feng Wei, Zhao Aimin, Yan Jurang. Global Attractivity of the General Logistic Equation. Appl. Math. J. Chinese Univ. Ser. A, 2001, 16(2): 136-142)
[27] 冯伟, 段永瑞, 燕居让. 一类非自治非线性时滞微分方程的全局吸引性. 应用数学学报, 2002, 25(2): 216-222 (Feng Wei, Duan Yongrui, Yan Jurang. Global Attractivity of Some Kind of Nonautonomous Nonlinear Delay Differential Equation. Acta Mathematicae Applicatae Sinica, 2002, 25(2): 216-222) 浏览
[28] 王晓萍, 廖六生. 广义Logistic型泛函微分方程零解的全局吸引性. 应用数学学报, 2004, 24(1): 172-179 (Xiaoping Wang, Liusheng Liao. Global Attractivity of the Zero Solution of the General Logistic Functional Differential Equation. Acta Mathematicae Applicatae Sinica, 2004, 24(1): 172-179)
[29] 汪东树, 王全义. 广义Logistic型泛函微分方程零解的全局吸引性. 华侨大学学报, 2011, 32(1): 103-108 (Dongshu Wang, Quanyi Wang. Global Attractivity of the Zero Solution of the General Logistic Functional Differential Equation. J. Huaqiao University (Natural Science), 2011, 32(1): 103-108)
[1] 田亚州, 蔡远利, 孟凡伟. 含有连续分布时滞偶阶微分方程的振动性[J]. 应用数学学报, 2013, 36(6): 1080-1093.
[2] 郭松柏, 沈有建. 一阶中立型差分方程振动的充分必要条件[J]. 应用数学学报, 2013, 36(5): 840-850.
[3] 孙一冰, 韩振来, 孙书荣, 张超. 时间尺度上一类二阶具阻尼项的半线性中立型时滞动力方程的振动性[J]. 应用数学学报, 2013, 36(3): 480-494.
[4] 钟记超, 欧阳自根, 邹树梁. 一类带有阻尼项的二阶半线性中立型微分方程解的振动准则[J]. 应用数学学报, 2012, (6): 972-983.
[5] 张全信, 高丽, 俞元洪. 偶阶半线性中立型分布时滞微分方程的振动性[J]. 应用数学学报, 2011, 34(5): 895-905.
[6] 王冬梅, 徐志庭. 二阶拟线性中立型差分方程的振动性[J]. 应用数学学报, 2011, 34(3): 537-553.
[7] 张全信, 俞元洪. 偶阶半线性阻尼泛函微分方程的振动性[J]. 应用数学学报, 2010, 33(4): 601-610.
[8] 王桂霞, 孙炯. 带转移条件的Strum-Liouville问题特征函数的振动性[J]. 应用数学学报, 2010, 33(3): 395-411.
[9] 陈凤德, 陈晓星, 林发兴, 史金麟. 一类时滞微分系统的周期解和全局吸引性[J]. 应用数学学报, 2005, 28(1): 55-64.
[10] 郭志明, 庾建设, 雷光龙. 具有时滞的利率-流通量方程的建立及其应用[J]. 应用数学学报, 2004, 27(4): 702-709.
[11] 刘文斌, 李勇. 三阶向量微分方程的非线性振动[J]. 应用数学学报, 2004, 27(4): 723-729.
[12] Wen Rui SHAN, Wei Gao GE , Zhi Lei NIU. 具有正负系数的中立型时滞微分方程的零点分布[J]. 应用数学学报, 2004, 27(1): 12-26.
[13] 王晓萍, 廖六生. 广义Logistic型泛函微分方程零解的全局吸引性[J]. 应用数学学报, 2004, 27(1): 172-179.
[14] 唐先华, 庾建设. 超线性时滞微分方程解的振动性[J]. 应用数学学报, 2003, 26(2): 328-336.
[15] 王侃民, 周军, 黄艾香. 具有变号系数中立型时滞微分方程的振动性[J]. 应用数学学报, 2002, 25(4): 650-659.
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9