应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2013, Vol. 36 Issue (5): 910-922    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
二粒子Boltzmann方程组的奇异扰动解法:初始层解
韩燕丽, 田红晓, 阿其拉图
内蒙古大学数学科学学院, 呼和浩特
On the Singular Perturbation Solution of Two-particle Boltzmann Equations: Initial Layer Solution
HAN Yanli, TIAN Hongxiao, A Qilatu
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021
 全文: PDF (344 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文讨论了二粒子Boltzmann方程组的初始层解. 为此先对未知变量进行了Fourier 变换, 然后运用奇异扰动解法得到了二粒子Boltzmann方程组的正规解和初始层解以及其初始层解的初级和高级近似, 并且得到了初始层解和正规解的连接.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩燕丽
田红晓
阿其拉图
关键词二粒子Boltzmann方程组   正规解   初始层解     
Abstract: The initial layer solution of the Boltzmann Hierarchy for two-particles is discussed in this article. By using the method of The Singular Perturbation Solution, we formulate the Boltzmann Hierarchy with Fourier transform, and then get the normal solution and initial solution. In addition,the primary and high-order approximation of the initial layer solution is obtained and the connection between the normal solution and initial layer solution is given.
Key wordsBoltzmann Hierarchy   normal solution   initial layer solution   
收稿日期: 2011-11-25;
基金资助:国家自然科学基金 (No.10861008; No.11161030)资助项目.
引用本文:   
韩燕丽,田红晓,阿其拉图. 二粒子Boltzmann方程组的奇异扰动解法:初始层解[J]. 应用数学学报, 2013, 36(5): 910-922.
HAN Yanli,TIAN Hongxiao,A Qilatu. On the Singular Perturbation Solution of Two-particle Boltzmann Equations: Initial Layer Solution[J]. Acta Mathematicae Applicatae Sinica, 2013, 36(5): 910-922.
 
[1] Yi-Ming Gao, Xiao-Hui Wang. Criteria for Generalized Diagonally Dominant Matrices and M-matrices. Linear Algebra Appl., 1992, 169: 257-268
[2] Grad, Harold. Correlations, Fluctuations, and Turbulence in a Rarefied Gas. Long-time Prediction in dynamics (Lakeway, Tex.,1981), 45-70, Nonequilib. Problems Phys. Sci. Biol., 2, Wiley, New York, 1983
[3] Tsugé S. Approch to the Origin of Turbulence on the Basis of Two-point Kinetic Theory. Phys. Fluids, 1974, 17(1): 22-33
[4] Lewis M B. Kinetic Theory of Turbulent Flows. Phys. Fluids, 1975, 18(3): 313-319
[5] Tsugé S, Sagara K. Arrhenius' Law in Turbulent Media and an Equivalent Tunnel Effect. Combustion Science and Technology, 1978, 18(5-6): 179-189
[6] Chen T Q. Hilbert-Enskog-Chapman Expansion in the Turbulent Kinetic Theory of Gases. Journal of Statistical Physics, 1981, 25(3): 491-514
[7] 陈建宁. Boltzmann方程的两个解的平均作为二粒子Boltzmann方程系的解. 数学物理学报, 1990, 10(3): 259-272 (Chen J N. The Solution of Two-particle Boltzmann equations is Made by the Average of Two Solutions of Boltzmann Equation. Acta Mathematica Scientia, 1990, 10(3): 259-272)
[8] 高益明. 广义对角占优矩阵与M-矩阵的判定. 高等学校计算数学学报, 1992, 14(3): 233-239 (Gao Y M. Criteria for Generalized Diagonally Dominant Matrices and M-matrices. Numerical Mathematics a Journal of Chinese Universities, 1992, 3: 233-239)
[9] 干泰彬, 黄廷祝. 非奇异H矩阵的实用充分条件. 计算数学, 2004, 26(1): 109-116 (Gan T B, Huang T Z. Practical Sufficient Conditions of Nonsingular H-matrices. Mathematica Numerica Sinica, 2004, 26(1): 109-116)
[10] 杨梅荣. 二粒子Boltzmann方程组的奇异扰动解法 (边界层解). 应用数学, 2011, 24(3): 434-442 (Yang M R. On the Singular Perturbation Solution of Two-particle Boltzmann Equations (Boundary Layer Solution). Mathematica Applicata, 2011, 24(3): 434-442)
[11] 沈光星. 非奇异H矩阵的新判据. 工程数学学报, 1998, 15(4): 21-27 (Shen G X. New Criterion of Nonsingular H-matrix. Journal of Engineering Mathematics, 1998, 15(4): 21-27)
[12] Grad H. Asymptotic Theory of the Boltzmann Equation. Phys. Fluid, 1963, 6(2): 147-181
[13] Toshiyuki Kohno, Hiroshi Niki, Hideo Sawami, Yi-mimg Gao. An Iterative Test for H-matrix. Journal of Computational and Applied Mathematics, 2000, 115: 349-355
[14] 牡丹. 混合气体Boltzmann方程组的奇异扰动解法. 内蒙古大学学报, 2008, 39(4): 383-388 (Mudan. The Singular Perturbation Solution of Boltzmann Equation for a Gas-mixture. Journal of Inner Mongolia University, 2008, 39(4): 383-388)
[15] 丁鄂江,黄祖洽. Boltzmann方程组的奇异扰动解法. 物理学报, 1985, 34(2): 65-87, 213-223 (Ding E J, Huang Z Q. On the Singular Perturbation Solution of Boltzmann Equation. Journal of Physics, 1985, 34(2): 65-87, 213-223)
没有找到本文相关文献
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9