应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2013, Vol. 36 Issue (5): 900-909    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
(2+1)维Kadomtsev-Petviashvili方程解的时空分岔
许镇辉1, 陈翰林2, 戴正德3
1. 西南科技大学应用技术学院,绵阳 621010;
2. 西南科技大学理学院,绵阳 621010;
3. 云南大学数学与统计学院,昆明 650091
Spatiotemporal Bifurcation of Soliton for the (2+1)-dimensiona Kadomtsev-Petviashvili Equation for Recurrent Event Data
XU Zhenhui1, CHEN Hanlin2, DAI Zhengde3
1. Applied Technology College, Southwest University of Science and Technology, Mianyang 621010;
2. School of Science, Southwest University of Science and Technology, Mianyang 621010;
3. School of Mathematics and Statistics, Yunnan University, Kunming 650091
 全文: PDF (8253 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 木文利用平衡点的平移和拓展的三波测试方法,着重讨论了(2+1)维Kadomtsev-Petviashvili方程所描述的动力系统的时空分岔问颗.得到了一此新的、重要的结果.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
许镇辉
陈翰林
戴正德
关键词KP方程   三波测试方法   时空分岔   平衡点     
Abstract: In this work, by using translation of equilibrium and extend three-wave type of ansätz approach, we discuss the spatiotemporal bifurcation of soliton for the (2+1)-dimensional Kadomtsev-Petviashvili equation and obtain some new conclusions.
Key wordsKP equation   three-wave type of ansätz approach   spatiotemporal bifurcation   equilibrium points   
收稿日期: 2012-05-09;
基金资助:国家自然科学基全(10971169, 11061028) 资助项目.
引用本文:   
许镇辉,陈翰林,戴正德. (2+1)维Kadomtsev-Petviashvili方程解的时空分岔[J]. 应用数学学报, 2013, 36(5): 900-909.
XU Zhenhui,CHEN Hanlin,DAI Zhengde. Spatiotemporal Bifurcation of Soliton for the (2+1)-dimensiona Kadomtsev-Petviashvili Equation for Recurrent Event Data[J]. Acta Mathematicae Applicatae Sinica, 2013, 36(5): 900-909.
 
[1] Zhang K L, Tang S Q, Wang Z J. Bifurcation of Travelling Wave Solutions for the Generalized Camassa-Holm-KP Equations. Commun. Nonlinear Sci. Numer. Simulat., 2010, 15: 564-572
[2] Dai Z D, Li S L, Dai Q Y, Huang J. Singular Periodic Soliton Solutions and Resonance for the Kadomtsev-Petviashvili Equation. Chaos, Solitons and Fractals, 2007, 34: 1148-1153
[3] Dai Z D, Lin S Q, Fu H M, Zeng X P. Exact Three-wave Solutions for the KP Equation. Appl. Math. Comput., 2010, 216(5): 1599-1604
[4] Ran A C M, Reurings M C B. A Fixed Point Theorem in Partially Ordered Sets and Some Applications to Matrix Equations. Proc. Am. Math. Soc., 2004, 132: 1435-1443
[5] Swnatorski A, Infeld E. Simulation of Two-dimensional Kadomtsev-Petviashvili Soluton Dynamics in Three-dimensional Space. Phys. Rev. Lett., 1996, 77: 2855-2858
[6] Nieto J J, Lopez R R. Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations. Order., 2005, 22: 223-239
[7] Nieto J J, Lopez R R. Existence and Uniqueness of Fixed Points in Partially Ordered Sets and Applications to Ordinary Differential Equations. Acta Math. Sin., 2007, 23: 2205-2212
[8] Zhang S, Xia T C. A Generalized New Auxiliary Equation Method and Its Applications to Nonlinear Partial Differential Equations. Phys. Lett. A., 2007, 363: 356-360
[9] He J H. An Elementary Introduction to Recently Developed Asymptotic Methods and Nanomechanics in Textile Engineering. Int. J. Mod. Phys. B, 2008, 22(21): 3487-3578
[10] MaW X, Fan E G. Linear Superposition Principle Applying to Hirota Bilinear Equations. Computers and Mathematics with Applications, 2011, 61: 950-959
[11] Donal O'Regan. Adrian Petrusel, Fixed Point Theorems for Generalized Contractions in Ordered Metric Spaces. J. Math. Anal. Appl., 2008, 341: 1241-1252
[12] Liu X Q, Chen H L, Lv Y Q. Explicit Solutions of the Generalized KdV Equation with Higher order Nonlinearity. Appl. Math. Comput., 2005,171: 315-319
[13] Gnana Bhaskar T, Lakshmikantham V. Fixed Point Theorems in Partially Ordered Metric Spaces and Applications. Nonlinear Analysis, 2006, 65: 1379-1393
[14] Dai Z D, Li Z T. Exact Periodic Cross-kink Wave Solutions and Breather Type of Two-solitary Wave Solutions for the (3+1)-dimensional Potential-YTSF Equation. Computers and Mathematics with Applications, 2011, 61: 1939-1945
[15] Xu Z H, Xian D Q. New Periodic Solitary-wave Solutions for the Benjiamin Ono Equation. Applied Mathematics and Computation, 2010, 215: 4439-4442
[16] Chow K W. A Class of Doubly Periodic Waves for Nonlinear Evolution Equations. Wave Motion, 2002, 35: 71-90
[17] Xu Z H, Liu X Q. Explicit Peaked Wave Solution to the Generalized Camassa-Holm Equation. Acta Mathematicae Applicatae Sinica, 2010, 26(2): 277-282 浏览
[1] 俞建. 关于良定问题[J]. 应用数学学报, 2011, 34(6): 1007-1022.
[2] 吴庆华, 汤燕斌. 空间非局部带时滞的Hosono-Mimura模型的双稳行波解[J]. 应用数学学报, 2011, 34(6): 1136-1140.
[3] 俞建. 自反Banach空间中Ky Fan点的存在性[J]. 应用数学学报, 2008, 31(1): 126-131.
[4] 方彬 李学志. 潜伏期具有传染性的年龄结构MSEIS流行病模型的稳定性[J]. 应用数学学报, 2008, 31(1): 110-125.
[5] 李学志、 王世飞. 具有急慢性阶段的SIS流行病模型的稳定性[J]. 应用数学学报, 2006, 29(2): 282-296.
[6] 郭淑利, , 李学志. 具有垂直传染的年龄结构流行病模型的稳定性[J]. 应用数学学报, 2005, 28(4): 735-751.
[7] 蒋永新, 王进良. 具有励磁控制的电力系统的稳定性和分岔分析[J]. 应用数学学报, 2005, 28(1): 44-54.
[8] Jian YU, TAN Kok KEONG, Shu Wen XIANG, Hui YANG. 本质连通区的存在性与稳定性[J]. 应用数学学报, 2004, 27(2): 201-209.
[9] Li Qiang JIANG, Zhi En MA, S. Rionero, F. Petrillo. 一类含分布时滞革新传播模型的稳定性[J]. 应用数学学报, 2003, 26(4): 682-692.
[10] 李雪梅, 黄立宏. 具有外部输入和偏差的细胞神经网络的完全稳定性[J]. 应用数学学报, 2003, 26(3): 475-486.
[11] Lin LI, Min Ying TANG, Yuan Hong YV. 一个环境数学模型的一致持久性与稳定性[J]. 应用数学学报, 2003, 26(1): 149-157.
[12] 李全国, 赵怡. 一类具有无穷多个周期解的二阶偏微分方程[J]. 应用数学学报, 2002, 25(4): 704-712.
[13] 陈军杰. 具有常恢复率的艾滋病梯度传染模型[J]. 应用数学学报, 2002, 25(3): 0-0.
[14] 俞建, 罗群. Ky Fan点集的本质连通区[J]. 应用数学学报, 2000, 23(2): 294-298.
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9