应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2013, Vol. 36 Issue (4): 656-665    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
图的[a,b]-因子存在性的两个结果
周思中1, 刘红霞2, 徐兰3
1. 江苏科技大学数理学院, 镇江, 212003;
2. 烟台大学数学与信息科学学院, 烟台, 264005;
3. 新疆昌吉学院数学系, 昌吉, 831100
Two Results on the Existence of [a,b]-Factors in Graphs
ZHOU Sizhong1, LIU Hongxia2, XU Lan3
1. School of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang, 212003;
2. School of Mathematics and Informational Science, Yantai University, Yantai, 264005;
3. Department of Mathematics, Changji University, Changji, 831100
 全文: PDF (278 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 设G是一个图, a,b是整数且满足0≤ab. 如果存在G的一个支撑子图F, 使对任意的xV(G)adF(x)b, 则称FG的一个[a,b]-因子. 本文给出图中具有特定性质的[a,b]-因子的两个充分条件.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
周思中
刘红霞
徐兰
关键词   最小度   邻集   联结数   [a,b]-因子     
Abstract: Let G be a graph, and let a,b be two integers with 0≤ab. Then a spanning subgraph F of G is called an [a,b]-factor if adF(x)b holds for each xV(G). In this paper, we give two sufficient conditions for the existence of [a,b]-factors with prescribed properties.
Key wordsgraph   minimum degree   neighborhood   binding number   [a,b]-factor   
收稿日期: 2011-09-01;
基金资助:江苏省高校自然科学研究项目(10KJB110003);江苏省“青蓝工程”;江苏科技大学自然科学研究(2010SL101J, 2009SL154J);山东省高等学校科技计划(J10LA14)资助项目
引用本文:   
周思中,刘红霞,徐兰. 图的[a,b]-因子存在性的两个结果[J]. 应用数学学报, 2013, 36(4): 656-665.
ZHOU Sizhong,LIU Hongxia,XU Lan. Two Results on the Existence of [a,b]-Factors in Graphs[J]. Acta Mathematicae Applicatae Sinica, 2013, 36(4): 656-665.
 
[1] Bondy J A, Murty U S R. Graph Theory with Applications. London: Macmillan, 1976
[2] Liu G Z, Wang J F. (a,b,k)-critical Graphs. Advances in Mathematics, 1998, 27(6): 536-540
[3] Chen C P. Binding Number and Minimum Degree for [a,b]-factor. Journal of Systems Science and Mathematical Sciences, 1993, 6(1): 179-185
[4] 刘红霞, 高敬振. [a,b]-对等图的范-型条件. 大学数学, 2009, 25(4): 116-121 (Liu H X, Gao J Z. Fan-type Results for the Existence of [a,b]-uniform Graphs. Colloge Mathematics, 2009, 25(4): 116-121)
[5] Zhou S Z. Independence Number, Connectivity and (a,b,k)-critical Graphs. Discrete Mathematics, 2009, 309(12): 4144-4148
[6] Zhou S Z. A Sufficient Condition for Graphs to be Fractional (k,m)-deleted Graphs. Applied Mathematics Letters, 2011, 24(9): 1533-1538
[7] Zhou S Z, Jiang J S, Xu L. A Binding Number Condition for Graphs to be (a,b,k)-critical Graphs. Arab Journal of Mathematical Sciences, 2012, 18(2): 87-96
[8] Zhou S Z. A Sufficient Condition for a Graph to be an (a,b,k)-critical Graph. International Journal of Computer Mathematics, 2010, 87(10): 2202-2211
[9] 周思中. [a,b]-因子存在性的范-型条件. 数学学报 (A辑), 2011, 54(5): 803-810 (Zhou S Z. A Fan-type Condition for the Existence of [a,b]-Factors. Acta Mathematica Sinica (Series A), 2011, 54(5): 803-810)
[10] 周思中. 图的联结数与[a,b]-因子存在性. 系统科学与数学, 2009, 29(4): 484-489 (Zhou S Z. Binding Numbers of Graphs and the Existence of [a,b]-Factors. Journal of Systems Science and Mathematics Science, 2009, 29(4): 484-489)
[11] Liu H X, Liu G Z. A Neighborhood Condition for Graphs to have (g,f)-factors. Ars Combinatoria, 2009, 93: 257-264
[12] Woodall D R. k-factors and neighbourhoods of independent sets in graphs. J. London Math. Soc., 1990, 41(2): 385-392
[13] Katerinis P, Woodall D R. Binding Numbers of Graphs and the Existence of k-factors. Quarterly Journal of Mathematics, 1987, 38: 221-228
[14] Lovász L. Subgraph with Prescribed Valencies. Journal of Combinatorial Theory, 1970, 8: 391-416
[15] Yuan J J, Yu J Q. Random (m,r)-orthogonal (g,f)-factorizable Graphs. Applied Mathematics a Journal of Chinese Universities (A), 1998, 13(3): 311-318
[16] Lam P C B, Liu G Z, Li G J, et al. Orthogonal (g,f)-factorizations in Networks. Networks, 2000, 35(4): 274-278 3.0.CO;2-6 target="_blank">
[1] 唐晓清, 刘念祖, 王汉兴, 白延琴. 正则树的双变量色多项式研究[J]. 应用数学学报, 2013, 36(4): 761-768.
[2] 陈奕俊. WZ方法与一个二项式级数的部分和公式[J]. 应用数学学报, 2013, 36(3): 448-453.
[3] 章照止, 姜楠. 基于R-模的线性网络码[J]. 应用数学学报, 2013, 36(3): 471-479.
[4] 方莉, 宋红丽, 郭真华. 一类具有奇异性与真空的非牛顿流局部强解的爆破准则[J]. 应用数学学报, 2013, 36(3): 502-515.
[5] 郝国辉, 康庆德. 一类完全三部图的K1,3-因子大集[J]. 应用数学学报, 2013, 36(3): 516-520.
[6] 刘英. Banach空间中关于变分不等式组与严格伪压缩映射的粘滞逼近法[J]. 应用数学学报, 2013, 36(2): 324-336.
[7] 苏李君, 王全九, 秦新强, 曾辰. 二维非饱和土壤水分运动方程的径向基配点差分法[J]. 应用数学学报, 2013, 36(2): 337-349.
[8] 袁梓瀚, 黄元秋, 刘金旺. 循环图C(9,2)与路Pn的笛卡尔积的交叉数[J]. 应用数学学报, 2013, 36(2): 350-362.
[9] 杨军, 娜娜, 金燕. 时标上二阶带p-Laplacian算子的脉冲边值问题单调迭代正解的存在性[J]. 应用数学学报, 2013, 36(2): 363-375.
[10] 纪颖, 李一军, 芦鹏宇, 周勇. 一类分布鲁棒优化问题的线性化方法及其应用[J]. 应用数学学报, 2013, 36(2): 376-384.
[11] Zhong-yuan LIU. On the Existence of Solutions for an Elliptic System of Equations with Arbitrary Order Growth[J]. 应用数学学报, 2013, 29(2): 415-424.
[12] Yong-yang JIN, Jie-lin Lü, Rong-fei LIN. Hölder Continuity for a Class of Strongly Degenerate Schrödinger Operator Formed by Vector Fields[J]. 应用数学学报, 2013, 29(2): 281-288.
[13] Zhao-xia LIU, Zhao-hui LIU. Existence of Solutions for the Critical Elliptic System with Inverse Square Potentials[J]. 应用数学学报, 2013, 29(2): 315-328.
[14] 蔡建生, 王光辉, 闫桂英. 最大度为8不含特定子图的平面图的全染色[J]. 应用数学学报, 2013, 36(2): 280-292.
[15] 郭利涛, 覃城阜, 郭晓峰. n-double图的连通性[J]. 应用数学学报, 2013, 36(2): 204-208.
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9