应用数学学报  2013, Vol. 36 Issue (3): 566-572    DOI:
 论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 |

1. 安徽省濉溪中学, 淮北 235100;
2. 安徽城市管理职业学院基础部, 合肥 230011;
3. 安徽大学数学科学学院, 合肥 230039
Multiple Positive Solutions for Nonlinear Second-order Delay Differential Equations
WANG Huimin1, MENG Xiangwang2, JIANG Wei3
1. Anhui Suixi Middle School, Huaibei 235100;
2. Department of Foundation, Anhui Occupational College of City Management, Hefei 230011;
3. Department of Mathematics, Anhui University, Hefei 230039
 全文: PDF (239 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料

 服务 把本文推荐给朋友 加入我的书架 加入引用管理器 E-mail Alert RSS 作者相关文章 汪会民 孟祥旺 蒋威

Abstract： In this paper, we concerned with the existence of positive solutions for nonlinear boundary value problem.The main results in this paper proof the existence of double positive solutions for the boundary value problem.The proofs are using a three functionals fixed point theorem in a cone. For illustrating the theoretical analysis, we also give an examples.
Key wordspositive solution   fixed point   delay   cone

 引用本文: 汪会民,孟祥旺,蒋威. 二阶非线性时滞微分方程的多个正解[J]. 应用数学学报, 2013, 36(3): 566-572. WANG Huimin,MENG Xiangwang,JIANG Wei. Multiple Positive Solutions for Nonlinear Second-order Delay Differential Equations[J]. Acta Mathematicae Applicatae Sinica, 2013, 36(3): 566-572.

 [1] Erbe L H, Kong Q K. Boundary Value Problems for Singular Second Order Functional Differential Equations. J. Comput. Appl. Math., 1994, 53: 377-388 [2] Weng P X. Boundary Value Problems for Second Order Mixed Type Functional Differential Equations. Appl. Math. -JCU, 1997, 12B: 155-164 [3] Liu Z L, Li F Y. Multiple Positive Solutions of Nonlinear Two-point Boundary Value Problem. J. Math. Anal. Appl., 1996, 203: 610-625 [4] Jiang D Q, Wang J Y. On Boundary Value Problems for Singular Second Order Functional Differential Equations. J. Comput. Appl. Math., 2000, 116: 231-241 [5] Jiang D Q, Weng P X. Existence of Positive Solutions for Boundary Value Problems of Second Order Functional Differential Equations. EJQTDE, 1998, 6: 1-13 [6] Weng P X, Jiang D Q. Existence of Positive Solutions for Boundary Value Problem of Second Order FDE. Comput. Math. Appl., 1999, 37(10): 1-9 [7] Erbe L H, Wang H Y. On the Existence of Positive Solutions of Ordinary Differential Equations. Proc. Amer. Math. Soc., 1994, 120: 743-748 [8] Henderson J, Wang H Y. Positive Solutions for Nonlinear Eigenvalue Problems. J. Math. Anal. Appl., 1997, 208: 252-259 [9] Bai D Y, Xu Y T. Existence of Positive Solutions for Boundary-value Problems of Second-order Delay Differential Equations. Appl. Math. Letters, 2005, 18: 621-630 [10] Avery R I, Chyan C J, Henderson J. Twin Solutions of Boundary Value Problems for Ordinary Differential Equations and Finite Difference Equations. Comput. Math. Appl., 2001, 42(3-5): 695-704 [11] Avery R I, Henderson J. Two Positive Fixed Points of Nonlinear Operators on Order Banach Space. Comm. Appl. Nonlinear Anal., 2001, 8(1): 27-36 [12] Su H, Wei Z, Wang B. The Existence of Positive Solutions for a Nonlinear Four-point Singular Boundary Value Problem with a p-Laplacian Operator. Nonlinear Anal. Theory, Methods & Applications, 2007, 66(10): 2204-2217
 [1] 魏君, 蒋达清, 祖力. 一维p-Laplace二阶脉冲微分方程的奇异边值问题[J]. 应用数学学报, 2013, 36(3): 414-430. [2] 余国林, 刘三阳. 变动控制结构下几乎-锥-凸映射的标量函数刻画[J]. 应用数学学报, 2013, 36(3): 439-447. [3] 朴勇杰. 度量凸空间中Lipschitz型非自映射族的唯一公共不动点[J]. 应用数学学报, 2013, 36(3): 454-462. [4] 孙一冰, 韩振来, 孙书荣, 张超. 时间尺度上一类二阶具阻尼项的半线性中立型时滞动力方程的振动性[J]. 应用数学学报, 2013, 36(3): 480-494. [5] 周辉, 周宗福. 具S-型分布时滞的细胞神经网络的概周期解[J]. 应用数学学报, 2013, 36(3): 521-531. [6] 刘英. 与严格伪压缩映射的粘滞逼近法[J]. 应用数学学报, 2013, 36(2): 324-336. [7] 杨军, 娜娜, 金燕. 时标上二阶带p-Laplacian算子的脉冲边值问题单调迭代正解的存在性[J]. 应用数学学报, 2013, 36(2): 363-375. [8] 杨秋鸿, 冯春华. 具有n个小时滞脉冲系统的周期解[J]. 应用数学学报, 2013, (1): 165-175. [9] 靳巧花, 何青海. 具约束的多值映射的calmness的充分与必要条件[J]. 应用数学学报, 2013, (1): 176-188. [10] 程桂芳, 丁志帅, 慕小武. 自治非光滑时滞系统的有限时间稳定[J]. 应用数学学报, 2013, (1): 14-22. [11] 钟记超, 欧阳自根, 邹树梁. 一类带有阻尼项的二阶半线性中立型微分方程解的振动准则[J]. 应用数学学报, 2012, (6): 972-983. [12] 叶国炳, 申建华, 李建利. 带超前项的三阶脉冲中立型积分微分方程的初值问题[J]. 应用数学学报, 2012, (6): 1044-1057. [13] 朱见广, 郝彬彬. 次预不变凸集值优化导数型最优性条件[J]. 应用数学学报, 2012, (6): 1091-1098. [14] 孙博. 一类二阶Sturm-Liouville型边值问题多个正解的存在性[J]. 应用数学学报, 2012, 35(5): 769-776. [15] 姚庆六. 非线性悬臂梁方程的正解存在定理[J]. 应用数学学报, 2012, (4): 737-746.
 版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn京ICP备05002806号-9