应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2013, Vol. 36 Issue (3): 541-552    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
具有脉冲积分条件的一次脉冲积分-微分方程混合系统
胡兵, 乔元华
北京工业大学应用数理学院, 北京 100124
Hybrid System for First Order Impulsive Integro-differential Equations with Impulsive Integral Condition
HU Bing, QIAO Yuanhua
College of Applied Science, Beijing University of Technology, Beijing 100124
 全文: PDF (281 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文讨论具有脉冲积分条件的脉冲积分-微分方程混合类型的极值解的存在性.主要工具是上下解和单调迭代技术.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡兵
乔元华
关键词脉冲积分-微分方程   脉冲积分条件   上下解   单调迭代技术     
Abstract: In this paper, we discuss the existence of extreme solutions for the impulsive integro-differential equation of mixed type with impulsive integral conditions. The main tool is the method of upper and lower solutions coupled with the monotone iterative technique.
Key wordsimpulsive integro-differential equations   impulsive integral conditions   upper and lower solutions   monotone iterative technique   
收稿日期: 2011-08-26;
基金资助:国家自然科学基金(61070149);北京市自然科学基金(4072023)和北京市教委基金(KM200610005012)资助项目.
引用本文:   
胡兵,乔元华. 具有脉冲积分条件的一次脉冲积分-微分方程混合系统[J]. 应用数学学报, 2013, 36(3): 541-552.
HU Bing,QIAO Yuanhua. Hybrid System for First Order Impulsive Integro-differential Equations with Impulsive Integral Condition[J]. Acta Mathematicae Applicatae Sinica, 2013, 36(3): 541-552.
 
[1] He Z, He X. Periodic Boundary Value Problems for First Order Impulsive Integro-Differential Equations of Mixed Type. J. Math. Anal. Appl. 2004, 296: 8-20
[2] Li J, Shen J. Periodic Boundary Value Problems for Impulsive Integro-differential Equations. Appl. Math. Comput., 2006, 183: 890-902
[3] Nieto J J, Rodríguez-López R. New Comparison Results for Impulsive Integro-differential Equations and Applications. J. Math. Anal. Appl., 2007, 328: 1343-1368
[4] Luo Z, Nieto J J. New Results for the Periodic Boundary Value Problem for Impulsive Integro-differential Equaitons. Nonlinear Anal., 2009, 70: 2248-2260
[5] Ahmad B, Alsaedi A. Existence of Solutions for Anti-periodic Boundary Value Problems of Nonlinear Impulsive Functional Integro-differential Equations of Mixed Type. Nonlinear Anal: Hybrid Systems, 2009, 3: 501-509
[6] Tariboon J. Boundary Value Problems for First Order Functional Differential Equations with Impulsive Integral Conditions. J. Comput. Appl. Math., 2010, 234: 2411-2419
[7] Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Singapore: World Scientific, 1989
[8] Samoilenko A M, Perestyuk N A. Impulsive Differential Equations. Singapore: World Scientific, 1995
[9] Gao S, Chen L, Nieto J J, Torres A. Analysis of a Delayed Epidemic Model with Pulse Vaccination and Saturation Incidence. Vaccine. 2006, 24: 6037-6045
[10] Choisy M, Guegan J F, Rohani P. Dynamics of Infectious Diseases and Pulse Vaccination: Teasing Apart the Embedded Resonance Effects. Physica D: Nonlinear Phenomena. 2006, 22: 26-35
[11] Wang W, Wang H, Li Z. The Dynamic Complexity of a Three-species Beddington-type Food Chain with Impulsive Control Strategy. Chaos Solitons Fractals. 2007, 32: 1772-1785
[12] Nieto J J, Rodriguez-Lopez R. Monotone Method for First-order Functional Differential Equations. Comput. Math. Appl., 2006, 52: 471-484
[13] Li Y, Liu Z. Monotone Iterative Technique for Addressing Impulsive Integro-differential Equations in Banach Spaces. Nonlinear Anal., 2007, 66: 83-92
[1] 李晓静, 陈绚青, 鲁世平. 非线性项依赖一阶导数共振情形下二阶三点BVP解的存在唯一性[J]. 应用数学学报, 2012, (2): 375-380.
[2] 赵书芬, 张建元. 时滞脉冲抛物型微分方程解的存在性及其在种群动力学中的应用[J]. 应用数学学报, 2011, 34(6): 1068-1081.
[3] 夏静, 余志先, 袁荣. 一类具有非局部扩散的时滞Lotka-Volterra竞争模型的行波解[J]. 应用数学学报, 2011, 34(6): 1082-1093.
[4] 栾世霞, 赵艳玲. 带P-Laplacian 算子的四点四阶奇异边值问题的对称正解[J]. 应用数学学报, 2011, 34(5): 801-812.
[5] 张红侠, 刘立山, 郝新安. 具有积分边界条件的四阶奇异特征值问题的正解[J]. 应用数学学报, 2011, 34(5): 873-885.
[6] 张兴秋. 奇异四阶积分边值问题正解的存在唯一性[J]. 应用数学学报, 2010, 33(1): 38-50.
[7] 钟金标, 陈祖墀. 一类拟线性方程组的可解性[J]. 应用数学学报, 2003, 26(3): 420-426.
[8] Feng Qin ZHANG, Zhi En MA, Ju Rang YAN. 一阶带参数的时滞微分方程的边值问题[J]. 应用数学学报, 2003, 26(3): 525-532.
[9] 程建纲. 二阶微分方程边值问题的多重正解[J]. 应用数学学报, 2003, 26(2): 272-279.
[10] 刘颖. n阶非线性常微分方程两点及三点边值问题解的存在性的进一步结果[J]. 应用数学学报, 2003, 26(1): 72-90.
[11] 陈芳启. Banach空间中非线性二阶积分微分方程初值问题的极(值)解[J]. 应用数学学报, 2001, 17(3): 289-295.
[12] 陈芳启. Banach空间中非线性二阶积分微分方程初值问题的极(值)解[J]. 应用数学学报, 2001, 17(3): 289-295.
[13] 刘迎东, 李正元, 叶其孝. 周期反应-扩散系统正周期解的存在性、惟一性和稳定性[J]. 应用数学学报, 2001, 17(1): 1-13.
[14] 刘迎东, 李正元, 叶其孝. 周期反应-扩散系统正周期解的存在性、惟一性和稳定性[J]. 应用数学学报, 2001, 17(1): 1-13.
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9