应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2013, Vol. 36 Issue (3): 532-540    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
点群6一维六方准晶狭长体中有限长Griffith裂纹的反平面问题
施志昱, 刘官厅
内蒙古师范大学数学科学学院, 呼和浩特 010022
Anti-plane Analysis of a Finite Long Griffith Crack in a Point Group 6 of One-dimensional Hexagonal Quasicrystals Strip
SHI Zhiyu, LIU Guanting
College of Mathematical Science, Inner Mongolia Normal University, Huhhot 010022
 全文: PDF (402 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用复变函数法,通过构造新的保角变换,研究了裂纹面受剪切作用下点群6一维六方准晶狭长体中有限长Griffith裂纹的断裂行为,得到了裂纹尖端处应力强度因子的解析解.当狭长体高度趋于无穷时,该解析解退化为无限大点群6一维六方准晶中有限长Griffith裂纹问题的解.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
施志昱
刘官厅
关键词点群6一维六方准晶狭长体   有限长Griffith裂纹   保角变换   应力强度因子   解析解     
Abstract: As one kind of complex variable function method to solve the plane problem in fracture mechanics, conformal transformation method is very practical and effective, which transforms the area in physical plane to the unit circle inside (outside) or the upper half-plane (lower half-plane) in mathematical plane by a conformal transformation. In this article, by using the complex variable function method and proposing a new conformal mapping, the fracture problem of a finite Griffith crack in a point group 6 of one-dimensional hexagonal quasicrystals strip is studied under anti-plane shear stress load in the crack surface. The analytic solution of the stress intensity factors at the crack tip is obtained.When the height of the strip tends to infinite, the present results can be degenerated to the solutions of a Griffith crack in infinite point group 6 of one-dimensional hexagonal quasicrystals.
Key wordspoint group 6 of one-dimensional hexagonal quasicrystals strip   finite Griffith crack   conformal mapping   stress intensity factor   analytical solution   
收稿日期: 2011-05-30;
基金资助:国家自然科学基金(10761005)和内蒙古自然科学基金(2009MS0102)资助项目
引用本文:   
施志昱,刘官厅. 点群6一维六方准晶狭长体中有限长Griffith裂纹的反平面问题[J]. 应用数学学报, 2013, 36(3): 532-540.
SHI Zhiyu,LIU Guanting. Anti-plane Analysis of a Finite Long Griffith Crack in a Point Group 6 of One-dimensional Hexagonal Quasicrystals Strip[J]. Acta Mathematicae Applicatae Sinica, 2013, 36(3): 532-540.
 
[1] 董闯. 准晶材料. 北京: 国防工业出版社, 1998: 58-175 (Dong Ch. The Quasicrystal Material. Beijing: National Defence Industry Press, 1998: 58-175)
[2] 范天佑. 断裂理论基础. 北京: 科学出版社, 2003 (Fan T Y. Foundation of Fracture Mechanics. Beijing: Science Press, 2003)
[3] 刘官厅. 准晶弹性的复变方法与非线性发展方程的显示解. 呼和浩特: 内蒙古人民出版社, 2005 (Liu G T. The Complex Variable Function Method of Quasicrystals Elasticity and Analytic Solutions of Nonlinear Equations. Huhhot: Inner Mongolia People Press, 2005)
[4] 郭俊宏, 刘官厅. 一维六方准晶中具有不对称裂纹的圆形孔口问题的解析解. 应用数学学报, 2007, 30(6): 1066-1075 (Guo J H, Liu G T. Analytic Solutions of the One-dimensional Hexagonal Quasicrystals about Problem of a Circular Hole with Asymmetry Cracks. Acta Mathematicae Applicatae Sinica, 2007, 30(6): 1066-1075)
[5] 杨丽星, 刘官厅. 一维六方准晶中带三条不对称裂纹的圆形孔口问题的解析解. 数学的实践与认识, 2010, 40(2): 148-156 (Yang L X, Liu G T. Analytic Solutions of Problem about an Elliptic Hole with a Straight Crack in One-dimensional Hexagonal Quasicrystals. Mathematics in Practice and Theory, 2010, 40(2): 148-156)
[6] 郭怀民, 乔文华. 一维六方准晶中带裂纹的椭圆孔口问题的解析解. 宁夏大学学报, 2009, 30(3): 223-226 (Guo H M, Qiao W H. Analytic Solutions of Problem about an Elliptic Hole with a Straight Crack in One-dimensional Hexagonal Quasicrystals. Journal of Ningxia University (Natural Science Edition), 2009, 30(3): 223-226)
[7] 郭俊宏, 刘官厅. 一维六方准晶中带双裂纹的椭圆孔口问题的解析解. 应用数学和力学, 2008, 29(4): 439-446 (Guo J H, Liu G T. Analytic Solutions of Problem about an Elliptic Hole with two Straight Cracks in One-dimensional Hexagonal Quasicrystals. Applied Mathematics and Mechanics, 2008, 29(4): 439-446)
[8] Fan T Y. Mathematical theory of Elasticity of Quasicrystals and Its Applications. Heidelberg: Springer-Verlag, 2010
[9] 皮建东, 刘官厅, 郭怀民. 一维六方准晶狭长体中共线裂纹问题的精确解. 内蒙古师范大学学报, 2006, 35(4): 391-396 (Pi J D, Liu G T, Guo H M. Exact Solutions of the One-dimensional Hexagonal Quasicrystals with two Semi-infinite Collinear Cracks in a Strip. Journal of Inner Mongolia Normal University (Natural Science Edition), 2006, 35(4): 391-396)
[1] 贾红刚, 聂玉峰. 各向异性板半无限裂纹平面问题的保角变换解法[J]. 应用数学学报, 2013, 36(2): 243-248.
[2] 庞之垣. 两种介质各阶应力强度因子的直接积分表达(Ⅱ):一般情况[J]. 应用数学学报, 1996, 19(2): 263-270.
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9