应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2013, Vol. 36 Issue (3): 521-531    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
S-型分布时滞的细胞神经网络的概周期解
周辉1, 周宗福2
1. 合肥师范学院数学系, 合肥 230601;
2. 安徽大学数学科学学院, 合肥 230039
Almost Periodic Solutions for Cellular Neural Networks with S-type Distributed Delays
ZHOU Hui1, ZHOU Zongfu2
1. Department of Mathematics, Hefei Normal University, Hefei 230601;
2. School of Mathematical Sciences, Anhui University, Hefei 230039
 全文: PDF (348 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 该文研究一类具S-型分布时滞的细胞神经网络(CNNS)的概周期解及全局指数型稳定性问题.利用指数型二分性和Schauder不动点定理以及构造Lyapunov函数,得到了细胞神经网络模型概周期解和指数稳定性的一些充分条件.此外,给出一个实例说明结果是可行的.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
周辉
周宗福
关键词细胞神经网络   S-型分布时滞   概周期解   指数稳定性   Schauder 不动点定理     
Abstract: In this paper, we study the almost periodic solutions and the global exponential stability of the almost periodic solutions for a class of cellular neural networks(CNNS) with S-type Distributed Delays. Some sufficient conditions for the almost periodic solutions and the global exponential stability of the almost periodic solutions are established by employing exponential dichotomy and Schauder fixed point theorem and building Lyapunov functions. Moreover, an example is given to illustrate the effectiveness of our results.
Key wordscellular meural networks   S-type distributed delays   almost periodic solutions   exponential stability   Schauder fixed point theorem   
收稿日期: 2011-09-22;
基金资助:国家自然科学基金(11071001)和安徽省自然科学基金(1208085MA13)资助项目.
引用本文:   
周辉,周宗福. 具S-型分布时滞的细胞神经网络的概周期解[J]. 应用数学学报, 2013, 36(3): 521-531.
ZHOU Hui,ZHOU Zongfu. Almost Periodic Solutions for Cellular Neural Networks with S-type Distributed Delays[J]. Acta Mathematicae Applicatae Sinica, 2013, 36(3): 521-531.
 
[1] Peng G Q, Huang L H. Anti-periodic Solutions for Shunting Inhibitory Cellular Neural Networks with Continuously Ditributed Delays. Nonlinear Anal: Real World Applications, 2009, 10: 2434-2440
[2] Yang T, Yang L B, Wu C W, Leon O C. Fuzzy Cellular Neural Networks: Theory. IEEE International Workshop on Cellular Neural Networks and Applications, 1996, 6: 181-186
[3] Wang S, Wang M. A New Detection Algorithm Based on Fuzzy Cellular Neural Networks for White Blood Cell Detection. IEEE Trans. on Information Technology in Biomedicine, 2006, 10(1): 5-10
[4] 张若军, 王林山. 具有分布时滞的细胞神经网络的概周期解. 数学物理学报, 2011, 31(A): 422-429 (Zhang R J, Wang L S. Almost Periodic Solutions for Cellular Neural Networks with Distributed Delays. Acta Math. Scientia, 2011, 31(A): 422-429)
[5] Liu Y Q, Tang W S. Exponential Stability of Delay Fuzzy Cellular Neural Networks with Diffusion. Chaos, Solitons and Fractals, 2007, 31: 658-664
[6] Yuan K, Cao J D, Deng J M. Exponential Stability and Periodic Solutions of Fuzzy Cellular Neural Networks with Time-varying Delays. Neurocomputing, 2006, 69: 1619-1627
[7] 郑祖庥. 泛函微分方程理论. 合肥: 安徽教育出版社, 1994 (Zheng Z X. Theory of Functional Differential Equations. Hefei: Anhui Education Press, 1994)
[8] Xiang H J, Wang J H. Periodic Solutions to Fuzzy Cellular Neural Networks with Distributed Delays. Ann. of Diff. Eqs., 2008, 24(3): 346-355
[9] Deng S J, Tian Y, Hu X P. Application of New Advanced CNN Structure with Adaptive Tthresholds to Color Edge Detection. Commun. Nonlinear Sci. Numer. Simu., 2012, 17: 1637-1648
[10] Dong M. Global Exponential Stability and Existence Periodic Solutions of CNNs with Delays. Phys. Lett. A, 2002, 300: 49-57
[11] Zhou H, Zhou Z F, Wang Q. Positive Almost Periodic for a Class of Lasota-Wazewska Model with Infinite Delays. Appl. Math. Compu., 2011, 218: 4501-4506
[12] Fink, A.M., Almost Periodic Differential Equations. In: Lecture Notes on Mathematics, Vol.377, Springer-Verlag, Berlin, 1974
[13] 何崇佑. 概周期微分方程. 北京: 高等教育出版社, 1992 (He C Y. Almost Periodic Differential Equations. Bejing: Higher Education Press, 1992)
[14] Hale J K. Theory of Functional Differential Quations. New York: Springer-Verlag, 1977
[15] 郭大钧. 非线性泛函分析. 济南: 山东科学出版社, 2001 (Guo D J. Nonlinear Functional Analysis. Jinan: Shandong Science Press, 2001)
[1] 乔琛, 徐宗本. Sigmoid型静态连续反馈神经网络的临界全局指数稳定性[J]. 应用数学学报, 2012, (6): 961-971.
[2] 周少波. 马尔科夫切换型中立型随机泛函微分方程[J]. 应用数学学报, 2012, (6): 1128-1140.
[3] 张为元, 李俊民, 夏志乐. 时变线性分布参数系统的鲁棒指数稳定性分析[J]. 应用数学学报, 2012, 35(5): 879-891.
[4] 孟益民, 黄立宏, 郭振远. 具不连续激励函数Cohen-Grossberg神经网络周期解的全局指数稳定性[J]. 应用数学学报, 2009, 32(1): 154-168.
[5] 冯春华, 刘永建, 葛渭高. 时滞Lotka-Volterra竞争型系统的概周期解[J]. 应用数学学报, 2005, 28(3): 458-467.
[6] An Ping CHEN, Jin De CAO, Li Hong HUANG. 时滞BAM神经网络周期解的存在性和全局指数稳定性[J]. 应用数学学报, 2005, 28(2): 193-209.
[7] 李雪梅, 黄立宏. 具有外部输入和偏差的细胞神经网络的完全稳定性[J]. 应用数学学报, 2003, 26(3): 475-486.
[8] 冯春华, 葛渭高. 一类种群动力学模型的概周期解[J]. 应用数学学报, 2003, 26(3): 402-407.
[9] 赵春山, 李开泰. 描述地球物理流动的磁流体型发展方程定常解的L~r指数稳定性[J]. 应用数学学报, 2002, 25(4): 604-616.
[10] 王利生, 陈白丽. 非线性系统稳定分析的特征函数法及其应用[J]. 应用数学学报, 2001, 24(4): 495-501.
[11] 冯春华, 葛渭高. 时滞Liénard方程概周期解的存在唯一性[J]. 应用数学学报, 2001, 24(1): 27-033.
[12] 徐建华, 王志成. 一类概周期时滞捕食-食饵系统的概周期解[J]. 应用数学学报, 2000, 23(3): 394-402.
[13] 姜东平. 有食饵补充的二维捕食食饵模型的周期解与概周期解[J]. 应用数学学报, 1995, 18(2): 167-175.
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9