应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2013, Vol. Issue (1): 108-114    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
一类奇摄动Robin问题的内部冲击波解
石兰芳1, 林万涛2, 温朝晖3, 莫嘉琪4
1. 南京信息工程大学数学与统计学院, 南京 210044;
2. 大气科学和地球流体力学数值模拟国家重点实验室, 中国科学院大气物理研究所, 北京 100029;
3. 安徽财经大学统计与应用数学学院, 蚌埠 233030;
4. 安徽师范大学数学系, 芜湖 241003
Internal Shock Solution for a Class of Singularly Perturbed Robin Problems
SHI Lanfang1, LIN Wantao2, WEN Zhaohui3, MO Jiaqi4
1. College of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044;
2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamic, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;
3. Institute of Applied Mathematics, School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030;
4. Department of Mathematics, Anhui Normal University, Wuhu 241003
 全文: PDF (275 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文是利用匹配法构造了一类奇摄动非线性方程Robin问题冲击波解的渐近表示式. 得知冲击波在区间(0,1)内部的位置不但与扰动函数有关, 而且也与边界条件的取值有关.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
石兰芳
林万涛
温朝晖
莫嘉琪
关键词拟线性方程   冲击波解   内层   边界条件     
Abstract: In this paper, the expression of shock solutions for singularly perturbed Robin problem of nonlinear equations is constructed using the matching method. And the shock position is related not only the disturbed functions but also the values of the boundary conditions.
Key wordsquasilinear equation   shock solution   internal layer   boundary condition   
收稿日期: 2010-04-19;
基金资助:

国家自然科学基金(41275062, 11202106); 中国科学院战略性先导科技专项-应对气候变化的碳收支认证及相关问题项目(XDA01020304)和安徽教育厅自然科学基金(KJ2012A001, KJ2012Z245)资助项目.

引用本文:   
石兰芳,林万涛,温朝晖等. 一类奇摄动Robin问题的内部冲击波解[J]. 应用数学学报, 2013, (1): 108-114.
SHI Lanfang,LIN Wantao,WEN Zhaohui et al. Internal Shock Solution for a Class of Singularly Perturbed Robin Problems[J]. Acta Mathematicae Applicatae Sinica, 2013, (1): 108-114.
 
[1] Wang Mingliang. Solitary Wave Solutions for Variant Boussinesq Equations. Phys. Lett. A, 1995,199(3-4): 169-172
[2] Bekir A. A Generalized (G’/G)-expansion Method for the mKdV Equation with Variable Coefficients.Phys. Lett. A., 2008, 372(13): 2254-2257
[3] Parkes E J. Some Periodic and Solitary Travelling-wave Solutions of the Short-pulse Equation. ChaosSolitons Fractals, 2008, 38(1): 154-159
[4] Graef J R, Kong L. Solutions of Second order Multi-point Boundary Value Problems. Math. Proc.Camb. Philos. Soc., 2008, 145(2): 489-510
[5] Hovhannisyan G, Vulanovic R. Stability Inequalities for One-dimensional Singular Perturbation Prob-lems. Nonlinear Stud., 2008, 15(4): 297-322
[6] Barbu L, Cosma E. Elliptic Regularizations for the Nonlinear Heat Equation. J. Math. Anal. Appl.,2009, 351(2): 392-399
[7] Mo J Q. Approximate Solution of Homotopic Mapping to Solitary Wave for Generalized NomlinearKdV System. Chin. Phys. Lett., 2009, 26(1): 010204
[8] Mo J Q. Variational Iteration Solving Method for a Class of Generalized Boussinesq Equation. Chin.Phys. Lett., 2009, 26(6): 060202
[9] Mo J Q. Homotopiv Mapping Solving Method for Gain Fluency of a Laser Pulse Amplifier. Sciencein China (Series G), 2009, 52(7): 1007-1070
[10] Mo J Q, Lin W T, Wang H. Singularly Perturbed Solution in Atmosphere-ocean for Globl Climate.Chin. Geographical Sci., 2008, 18(2): 193-196
[11] Mo J Q, Lin W T. Asymptotic Solution for a Class of Sea-air Oscillator Model for EI Nino-Southern Oscillation. Chin. Phys. B, 2008, 17(2): 370-372
[12] Mo J Q, Lin W T. The Homotopic Method of Travelling Wave Solution for El Nino Tropic Sea-airCoupled Oscillatorys. Chin. Phys. B, 2008, 17(3): 743-746
[1] 罗兰. Burgers方程初边值问题的粘性消失极限[J]. 应用数学学报, 2012, (4): 649-662.
[2] 张红侠, 刘立山, 郝新安. 具有积分边界条件的四阶奇异特征值问题的正解[J]. 应用数学学报, 2011, 34(5): 873-885.
[3] 王远弟, 石忠锐. 一个非局部边界流问题解的存在性和渐近性[J]. 应用数学学报, 2005, 28(4): 629-638.
[4] 尚亚东, 郭柏灵. 广义对称正则长波方程的勒让德和切贝雪夫拟谱方法[J]. 应用数学学报, 2003, 26(4): 590-605.
[5] 曾有栋, 陈祖墀. 具有边界活塞控制质量装置的拟线性波方程解的性态[J]. 应用数学学报, 2001, 17(2): 247-254.
[6] 曾有栋, 陈祖墀. 具有边界活塞控制质量装置的拟线性波方程解的性态[J]. 应用数学学报, 2001, 17(2): 247-254.
[7] 李风泉. 椭圆问题的非线性边界条件均匀化[J]. 应用数学学报, 2000, 23(3): 420-428.
[8] 张显文. 多群流算子的谱[J]. 应用数学学报, 1999, 22(4): 481-489.
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9