应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2012, Vol. Issue (4): 737-746    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
非线性悬臂梁方程的正解存在定理
姚庆六
南京财经大学应用数学系, 南京 210003
Existence Theorems of Positive Solution to a Nonlinear Cantilever Beam Equation
YAO Qingliu
Department of Applied Mathematics, Nanjing University ofFinance and Economics, Nanjing 210003
 全文: PDF (291 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 研究了非线性悬臂梁方程
u(4)(t)=f(t,u(t),u'(t)), 0<t<1, u(0)=u'(0)=u''(1)=u'''(1)=0
的正解, 其中非线性项 f(t,u,v) 可以在 t=0, t=1 处奇异. 在增长极限函数
存在的情况下利用度数理论中的 Krasnosel'skii 不动点定理、实变函数中的 Lebesgue 控制收敛定理和 Fatou 引理证明了两个新的正解存在定理.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚庆六
关键词非线性常微分方程   边值问题   奇异性   正解     
Abstract: The positive solution is studied for the nonlinear cantilever beam equation
u(4)(t)=f(t,u(t),u'(t)), 0≤ t ≤1, u(0)=u'(0)=u''(1)=u'''(1)=0,
where the nonlinear term f(t,u,v) may be singular at t=0, t=1. By making use of Krasnosel'skii fixed point theorem in degree theory and Lebesgue dominated convergence theorem and Fatou lemma in real variable, two new existence theorems of positive solution are proved when there are growth limit functions.
Key wordsnonlinear ordinary differential equation   boundary value problem   singularity   positive solution   
收稿日期: 2008-04-16;
基金资助:

国家自然科学基金(11071109)资助项目.

引用本文:   
姚庆六. 非线性悬臂梁方程的正解存在定理[J]. 应用数学学报, 2012, (4): 737-746.
YAO Qingliu. Existence Theorems of Positive Solution to a Nonlinear Cantilever Beam Equation[J]. Acta Mathematicae Applicatae Sinica, 2012, (4): 737-746.
 
[1] Gupta C P. Existence and Uniqueness Theorems for the Bending of an Elastic Beam Equation. Applicable Anal., 1988, 26: 289-304
[2] Agarwal R P, O'Regan D. Right Focal Singular Boundary Value Problems. Z. Angew. Math. Mech., 1999, 79: 363-373
[3] Agarwal R P, O'Regan D, Lakshmikantham V. Singular (p,n-p) Focal and (n,p) Higher order Boundary Value Problems. Nonlinear Anal., 2000, 42: 215-228
[4] Agarwal R P, O'Regan D. Twin Solutions to Singular Boundary Value Problems. Proc. Amer. Math. Soc., 2000, 128: 2085-2094
[5] Agarwal R P. Multiplicity Results for Singular Conjugate, Focal and (n,p) Problems. J. Differential Equations, 2001, 170: 142-156
[6] Ma Ruyun. Multiple Positive Solutions for a Semipositone Fourth-order Boundary Value Problem. Hiroshima Math. J., 2003, 33: 217-227
[7] Yao Qingliu, Li Yongxiang. Solution and Positive Solution to Nonlinear Cantilever Beam Equations. J. Southewest Jiaotong Univ., English Ed., 2008, 16: 51-54
[8] 姚庆六. 一类非线性悬臂梁方程的正解存在性与多解性. kaishu 系统科学与数学, 2009, 29: 63-69 REF (Yao Qingliu. Existence and Multiplicity of Positive Solutions to a Class of Nonlinear Cantilever Beam Equations. J. Sys. Sci. ssize & Math. Sci., 2009, 29: 63-69)
[9] 姚庆六. 含下有界非线性项的一类弹性梁方程解存在性与多解性. kaishu 应用数学学报, 2004, 27: 117-122 REF (Yao Qingliu. Existence and Multiplicity of Solutions for a Class of Nonlinear Elastic Beam Equations with Bounded-Below Nonlinearity. Acta Math. Appl. Sinica, 2004, 27: 117-122)
[10] Yao Qingliu. Positive Solutions for Eigenvalue Problems of Fourth-order Elastic Beam Equations. Appl. Math. Letters, 2004, 17: 237-243
[11] Yao Qingliu. Existence of n Solutions and/or Positive Solutions to a Semipositone Elastic Beam Equation. Nonlinear Anal. TMA, 2007, 66: 138-150
[12] Yao Qingliu. Positive Solutions of Nonlinear Elastic Beam Equation Rigidly Fastened on the Left and Simply Supported on the Right. Nonlinear Anal., Nonlinear Anal. TMA, 2008, 69: 1570-1580
[1] 苗利军, 裴明鹤. 一类带p-Laplace型算子的高阶两点边值问题的极值解[J]. 应用数学学报, 2012, (2): 356-374.
[2] 李晓静, 陈绚青, 鲁世平. 非线性项依赖一阶导数共振情形下二阶三点BVP解的存在唯一性[J]. 应用数学学报, 2012, (2): 375-380.
[3] 栾世霞, 赵艳玲. 带P-Laplacian 算子的四点四阶奇异边值问题的对称正解[J]. 应用数学学报, 2011, 34(5): 801-812.
[4] 赵东霞, 王宏洲, 王军民, 赵俊芳. 一类含隅角和弯矩的奇异梁方程三个正解的存在性[J]. 应用数学学报, 2011, 34(5): 813-821.
[5] 张红侠, 刘立山, 郝新安. 具有积分边界条件的四阶奇异特征值问题的正解[J]. 应用数学学报, 2011, 34(5): 873-885.
[6] 崔玉军, 孙经先. Banach空间中二阶微分方程三点边值问题的正解[J]. 应用数学学报, 2011, 34(4): 743-751.
[7] 王颖, 刘立山, 王永庆. 二阶奇异微分方程无穷边值问题[J]. 应用数学学报, 2011, 34(4): 577-590.
[8] 李成进. 凸半定规划中关于非奇异性的一个等价条件[J]. 应用数学学报, 2011, 34(2): 296-302.
[9] 胡良根, 周先锋, 王金平. 奇异特征值问题正解的全局结构[J]. 应用数学学报, 2011, 34(1): 139-148.
[10] 雍燕. 一类非线性抛物方程的初边值问题[J]. 应用数学学报, 2011, 34(1): 113-121.
[11] 栾世霞, 孙钦福. 一类二阶半正特征值问题的正解[J]. 应用数学学报, 2011, 34(1): 10-16.
[12] 李成进. 凸半定规划中关于非奇异性的一个等价条件[J]. 应用数学学报, 2011, 34(1): 296-302.
[13] 闫东明. 一类四阶两点边值问题正解的存在性[J]. 应用数学学报, 2010, 33(6): 1113-1122.
[14] 张兴秋, 王新华. 半直线上具有p-Laplacian算子的Sturm-Liouville型脉冲边值问题的单调迭代正解[J]. 应用数学学报, 2010, 33(5): 780-791.
[15] 王霞, 戚仕硕, 陈芳启. 二阶差分边值问题的正解[J]. 应用数学学报, 2010, 33(3): 547-558.
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9