应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2011, Vol. 34 Issue (5): 918-923    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
无穷维Hamilton算子的辛自伴性
吴德玉, 阿拉坦仓
内蒙古大学数学科学学院, 呼和浩特 010021
Symplectic Self-adjointness of Infinite Dimensional Hamiltonian Operator
WU Deyu, Alatancang
School of mathematics science, Inner Mongolia University, Hohhot 010021
 全文: PDF (252 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文运用算子扰动理论研究了无穷维Hamilton算子的共轭算子, 进而得到了无穷维Hamilton算子为辛自伴算子的若干充分条件.  
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词无穷维Hamilton算子   辛自伴算子   相对界     
Abstract: In this paper, the adjoint operator of infinite dimensional Hamiltonian operator is studied by method of perturbation theory and the sufficient conditions under which the infinite dimensional Hamiltonian operator is symplectic self-adjoint are given.  
Key wordsinfinite dimensional Hamiltonian operator   symplectic self-adjoint operator   relative bound   
收稿日期: 2010-08-16;
基金资助:

国家自然科学基金(10962004,11061019), 内蒙自然科学基金(2010MS0108)以及内蒙古大学高层次引进人才科研启动基金(Z20090103)资助项目.

引用本文:   
. 无穷维Hamilton算子的辛自伴性[J]. 应用数学学报, 2011, 34(5): 918-923.
. Symplectic Self-adjointness of Infinite Dimensional Hamiltonian Operator[J]. Acta Mathematicae Applicatae Sinica, 2011, 34(5): 918-923.
 
[1] Azizov T Ya, Dijksma A, Gridneva I V. On the Boundedness of Hamiltonian Operators. Proc. Amer.Math. Soc., 2002, 131(2): 563-576
[2] Kurina G A. Invertibility of Nonnegatively Hamiltonian Operators in a Hilbert Space. DifferentialEquations, 2001, 37(6): 880-882
[3] Langer H, Ran A C M. Invariant Subspace of Infinite Dimensional Hamiltonians and Solutions ofthe Corresponding Riccati Equations. Operator Theory: Advances and Applications, 2001, 1(130):220-221
[4] Zhong W X. A New Systematic Methodology for Theory of Elasticity. Dalian: Dalian University ofTechnology Press, 1995
[5] Zhang H Q, Alatancang, Zhong W X. The Hamiltonian System and Completeness of SymplecticOrthogonal System. Applied Mathematics and Mechanics, 1997, 18(3): 237-242
[6] Hess P, Kato T. Perturbation of Closed Operators and Their Adjoints. Comment. Math. Helv. 1970,45: 524-529
[7] Kato.T. Perturbation Theory for Linear Operators (Second Corrected Printing of the Second Edition).Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1984
[8] Huang J J, Alatancang, Chen Aruna. Completeness for the Eigenfunction System of a Class of InfiniteDimensional Hamiltonian Operators. Acta Mathematcae Applicatae Sinica, 2008, 31(3): 457-466
[9] Zhang L, Alatancang. Perturbation of Spectrums of a Class of Operator Matrices. Acta MathematcaeApplicatae Sinica, 2010, 33(1): 59-65
[10] Alatancang, Hou G L. Matrix Solving Process of Characteristic Series for Polynomial Systems. ActaMathematcae Applicatae Sinica, 2008, 31(6): 981-986
没有找到本文相关文献
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9