应用数学学报  2011, Vol. 34 Issue (6): 996-1006    DOI:
 论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 |

1. 长春工业大学应用数学所, 长春 130012;
2. 吉林大学数学研究所, 长春 130012
Homotopy Method for Solving Nonconvex Optimization with Weak Quasi Normal Condition
LIU Qinghuai1, ZHANG Chunyang2, ZHANG Shugong2
1. Institute of Applied Mathematics, Changchun University of Technology, Changchun 130012;
2. Institute of mathematics, Jilin University, Changchun 130012
 全文: PDF (368 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料

 服务 把本文推荐给朋友 加入我的书架 加入引用管理器 E-mail Alert RSS 作者相关文章

Abstract： In this paper, we define the weak qusi-normal cone condition and consider the nonlinear homotopy equation under the weak quasi-normal cone condition to solve con- strained non-convex programming program. For almost all the point in some feasible sub- set, the existence of the homotopy path is proved and the homotopy path converges to the K-K-T point. Numerical examples are presented to show the effectiveness of the algorithm.

 引用本文: . 弱拟法锥条件下非凸优化问题的同伦算法[J]. 应用数学学报, 2011, 34(6): 996-1006. . Homotopy Method for Solving Nonconvex Optimization with Weak Quasi Normal Condition[J]. Acta Mathematicae Applicatae Sinica, 2011, 34(6): 996-1006.

 [1] Carcia C B, Zangwill W I. Pathways to Solutions, Fixed Points, and Equilinbria. Prentice-Hall, 1981 [2] Karmarkar N. A New Polynomial-time Algorithm for Linear Programming. Com-binatorica, 1984, 4(4): 373-395 [3] Feng Guochen, Yu Bo. Combined Homotopy Interior Point Method for Nonlinear Programming Problems. Lecture Notes in Num. Anal., 1995, 14: 9-16 [4] Feng Guochen, Lin Zhenghua, Yu Bo. Existence of an Interior Pathway to a Karush-Kuhn-Tucker Point of a Nonconvex Programming Problem. J. Nonlinear Analysis, 1998, 32: 761-768 [5] Lin Zhenghua, Yu Bo, Feng Guo-chen. Combined Homotopy Interior Point Method for Convex Nonlinear Programming. J. Appl. Math. Comput., 1997, 84: 193-211 [6] Lin Zhenghua, Li Yong, Yu Bo. A Combined Homotopy Interior Point Method for General Nonlinear Programming Problems. J. Appl. Math. Comput., 1996, 80: 209-224 [7] Xiong Huijuan, Yu Bo. An Aggregate Deformation Homotopy Method for Constrained Min-max-min Problems with Max-min Constraints. J. Computational Optimization and Applications, 2009, DOI 10.1007/s10589-008-9229-y [8] Yu Bo, Feng G C, Zhang S L. The Aggregate Constraint Homotopy Method for Nonconvex Nonlinear Programming. J. Nonlinear Analysis, TMA, 2001, 45: 839-847 [9] Liu Qinghuai, Yu Bo, Feng Guo-chen. An Interior Point Path-following Mehod for Nonconvex Programming with Quasi Normal Cone Condition. Advances in Mathematics of Comunication, 2000, 29: 281-282 [10] Xiaona Fan, Yu Bo. Homotopy Method for Solving Variational Inequalities with Bounded Box Constraints. Nonlinear Analysis, 2008, 8(68): 2357-2361 [11] Xiaona Fan, Yu Bo. A Smoothing Homotopy Method for Solving Variational Inequalities. Nonlinear Analysis, 2009, 1(70): 211-219 [12] Yu Qian, Huang Chongchao, Wang Xianjia. A Combined Homotopy Interior Point Method for the linear Complementarity Problem. Applied Mathematics and Computation, 2006, 2(179): 696-701 [13] Su Menglong, Liu Zhenxin. Modified Homotopy Methods to Solve Fixed Points of Self-mapping in a Broader Class of Nonconvex Sets. Applied Numerical Mathematics, 2008, 3(58): 236-248 [14] Sun Wenjuan, Wang Cailing, Liu Qinghuai. A Homotopy Method for Getting a Local Minimum of Constrained Nonconvex Programming. Nonlinear Analysis, 2009, 71(10): 4725-4731 [15] 刘庆怀, 于波, 冯果忱. 基于拟法锥条件的非凸非线性规划问题的同伦内点法. 应用数学学报, 2003, 26(2): 372-373 (Liu Qinghuai, Yu Bo, Feng Guochen. A Homotopy Interior Method for Sovling Nonlinear Nonconvex Programming with Quasi Normal Cone Condition. Acta Mathematicae Applicatae Sinica, 2003, 26(2): 372-373) 浏览
 [1] 李向利, 刘红卫, 黄亚魁. 求解特定线性互补问题的牛顿KKT内点法[J]. 应用数学学报, 2010, 33(5): 889-899. [2] 李向利, 刘红卫, 黄亚魁. 求解特定线性互补问题的牛顿KKT内点法[J]. 应用数学学报, 2010, 33(1): 889-899. [3] 刘庆怀, 林正华. 求解多目标规划最小弱有效解的同伦内点方法[J]. 应用数学学报, 2000, 23(2): 188-195.
 版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn京ICP备05002806号-9